

SUPPLEMENTAL INFORMATION

4/30/2024

PROJECT:	Merced Col	llege Greenhouse Complex	OWNER:	Merced College 3600 M Street
ENGINEER:	Blair, Churc	h & Flynn		Merced CA, 95348
	Attention:	Zachary Hockett Kyle Lawson	BCF PROJECT NO.	222-0314
It will be the	responsibilit	y of the General Contractor to	submit the information	contained in this addendum to

It will be the responsibility of the General Contractor to submit the information contained in this addendum to all its subcontractors and suppliers. Acknowledge receipt of this Addendum in the space provided on the Bid Form. Failure to do so may subject Bidder to disqualification. The following additions, deletions, and revisions to the Drawings and Project Manual are hereby made and do become a part of these Contract Documents.

TABLE OF CONTENTS

SUPPLEMENTAL INFORMATION

SI-01: Small Greenhouse Specifications SI-02: Large Greenhouse Specifications

ATTACHMENTS

Small Greenhouse Specifications Large Greenhouse Specifications.

SUPPLEMENTAL INFORMATION

4/30/2024

SUPPLEMENTAL INFORMATION

SI-01: Small Greenhouse Specifications

 Pages 24-49 <u>Green House Manufacturer</u> or <u>https://www.greenhousemegastore.com/products/1200-series-gothic-arch-package?variant=42703411806407</u>

SI-02: Large Greenhouse Specifications

- Stamped Calculations
- Stamped Drawings
- Bill of Lading (BOL)
- Equipment Layout
- Merced Calculations

	GU2-18		Schaefer Aluminum Shutter 36° diameter 🗸		40/12/23 FA-SFSH-36
			Schaeter Aluminum Shuttel 30 diameter	CF-246P-5448	
			-	CF-240F-3440	
4	G03-1A	PICK	Schooler LIAE Ear VIX12 12" diameter 115v		
2 2 4	G01-2K	PICK	VC109 Two Stage Thermostat	CF-246P-S448	×10/12/23 CT-VC109
2	F04-1A	PICK	Storm Door White 36" x 80-81"	CF-246P-S448	10/12/23 CF-SD
19	D11-3A	PICK	Evaporative Cooling Pads, Coated 1 Side 6" x 36" 🗸		\$10/12/23 EV-GC1-636
	C10-1A	PICK	Evaporative Cooling Pads, Coated 1 Side 6" x 36"		10/12/23 EV-GC1-636
2	B02-2E	PICK	Evap System Trough Mounting Bracket for 4" & 6" pads 🦯	EV-SS6-05	10/05/23 EV-TMB-4
	B02-2E	PICK	Evap System Trough Mounting Bracket for 4" & 6" pads	* EV-SS6-01	¥ 10/05/23 EV-TMB-4
	B02-2D	PICK	PVC Threaded Male Adapter for 1-1/2" pipe (schedule 40)	P EV-SS6-01	10/05/23 SN-TMA-15
	B01-4F	PICK	Quietaire Evap System Pump 🗸	EV-SS6-01	10/05/23 EV-QP
	B01-3E	PICK	Vent Tape 1.5" x 108'		10/12/23 PCP-AC-20
	B01-3E	PICK	Vent Tape 1.5" x 108'	CF-246P-S448	10/12/23 PCP-AC-20
	B01-3D	PICK	Top Sealing Aluminum Tape 1" x 150'		10/12/23 PCP-AC-10
2	B01-3D	PICK	Top Sealing Aluminum Tape 1" x 150	CF-246P-S448	10/12/23 PCP-AC-10
2	B01-1A	PICK	Quietaire Evap System Filter	✓ EV-SS6-01	10/05/23 EV-QF
50 2	A01-1A	PICK	Corrugated Foam Closures	CF-246P-S448	³ ✓10/12/23 PC-CL-C
7					×
Qty. Qty. (Base) Handled	Bin Code	Zone Code	Description	Parent Item	Due Date Item No.
			Merced, CA 95348 USA		
			PO 0050858	Shelf or Rin	ſ
			3600 M St		Assigned User ID
Anooonn	y order:	Assembly Order:	Merced Comm College Dist	PK0584182	No.
SOUUU80563	der:	Sales Order:	Ship To: C003129	SA-CA	Location Code
			,	be: Pick. No.: PK0584182PK	Warehouse Activitv Header: Tvɒe: Pick. No.: PK0584182PK0584182
GM/NICHOL.FRANKLIN		£			
November 13, 12:13:2 Page 1	ť,		invoice int		
11			~ ちっつどうし ナウシー		

Picking List, IGCUSA

5 16

•

November 13, 2023 12:13:24 Page 2 GMINICHOL.FRANKLIN

Warehouse Activity Header: Type: Pick. No.: PK0584182..PK0584182

	2	L03-1E	PICK	EPDM Spacer, 100/Bag W9970300		10/12/23 GA-1005
1 - M	72	L03-1D	PICK	8 Nut Hex Pltd Coarse 5/16" 5/16-18 Zinc1	CF-246P-S448	40/12/23 CF-GA155
	36	L03-0E	PICK	81 Bolt/HH 1/2 x 2-1/2 A-307 Zinc	CF-246P-S448	X 10/12/23 CF-GA060
a la la	36	L03-0B	PICK	8 Nut Hex Coarse 1/2" 1/2-13 Zinc	CF-246P-S448	X 10/12/23 CF-GA170
	14	L03-0A	PICK	B Bolt/HH 3/8 x 1-3/4	CF-246P-S448	× 10/12/23 CF-GA045
	2	L02-2D	PICK	B Inflation Blower, 60 CFM	CF-246P-S448	10/12/23 FA-IB
28	12 β	L02-1C	PICK	Motorized Shutter Kit for 12-60" shutters, #1260 Motor		11/07/23 FA-VRS-1260
	28	K08-1	PICK	⁹ Girt 5" x 12' 4" (endwall girt) G0000312	CF-246P-S448	10/12/23 CF-GA312
	4	K07-3	PICK	O Eve Girt 12' for 1200 series cold frame	CF-246P-S448	10/12/23 CF-GA700
	4 /	K06-3	PICK	CF-246P-S448 - Heater Hanger Tube 2x2x11GA H0030100	CF-246P-S448	10/12/23 CF-HH-3010
	14	K06-2	PICK	CF-246P-S448 Cross Tube C0055358 24' 1200 1 pc	CF-246P-S448	10/12/23 CF-GA861
1000	8	K06-1A	PICK	Shutter Fan Support 5" Girt 🗸	CF-246P-S448	¥-10/12/23 CF-GA125
	16	K06-1	PICK	Purlin 5" x 12'4" 1200 series 20, 24, 30'w sides P0000860	CF-246P-S448	9.10/12/23 CF-GA190
	8	K04-6	PICK	Column Tube T-22, 1-5/8" x 14' C0000504	CF-246P-S448	¥10/12/23 CF-GA420
	4	K04-2	PICK	oJamb Door Sliding, 12' J0000111	CF-246P-S448	¥10/12/23 CF-GA342
500	36	K04-1	PICK	1200 Series Arch 24' (1/2 arch) C0055357	CF-246P-S448	10/12/23 CF-GA091
	8	K03-5	PICK	Kool Cell Girt K0000786 12' long	W CF-246P-S448	10/12/23 CG-CON-KC12W
A A	8	K03-2	PICK	Dynaglas Solarsoft Max Corrugated Polycarbonate 49.6" x 10' 🗸	CF-246P-S448	♣ 10/12/23 CPC-MAX-510
	8	K03-1	PICK	CF-246P-S448 CPurlin 5" x 12'4" 1200 series 20, 24, 30'w ridge P0000850	CF-246P-S448	10/12/23 CF-GA180
DA DA	8	K02-6	PICK	Alum Arch End Combo 290" R 24' 1200 Series A0000167	CF-246P-S448	10/12/23 CF-GA298
	12	K02-4	PICK	Dynaglas Solarsoft Max Corrugated Polycarbonate 49.6" x 14'	CF-246P-S448	4_10/12/23 CPC-MAX-514
J.	8	K02-3	PICK	Dynaglas Solarsoft Max Corrugated Polycarbonate 49.6" x 13' \checkmark	CF-246P-S448	10/12/23 CPC-MAX-513
	2	H09-4	PICK	Thermal AC Greenhouse Film, 6 mil 50' x 100'	CF-246P-S448	10/12/23 GF-6AC-50100
	32	но1-2	PICK	Spring Top Lock-Wiggle Wire 6' 4-1/2" Coated Galvanized Spring- Wiggle Wire	CF-246P-S448	3,10/12/23 GF-9002-PVC
	56	H01-2 🔨	PICK	Spring Top Lock-Wiggle Wire 6' 4-1/2" Coated Galvanized Spring- Wiggle Wire	CF-246P-S448	≭ 10/12/23 GF-9002-PVC
800				PK0584182	Tyne Pick No. PK0584182.	Warehouse Activity Header: Type: Pick, No.: PK0584182PK0584182

GMINICHOL FRANKLIN	Page	1	12:13:24	November 13, 2023
Ē	ω		:24	023

Picking List

10/12/23 CI	10/12/23 CF	10/12/23 CF	10/12/23 CF	10/12/23 CF	10/12/23 CF	10/12/23 CF	10/12/23 CF	10/12/23 CF	10/12/23 CF	10/12/23 CF-	10/12/23 CF-	10/12/23 CF-	10/12/23 CF-	10/12/23 GA-	* 10/12/23 GA-	10/12/23 CF-	10/12/23 CF-	10/12/23 CF-I	10/12/23 CT-1	10/12/23 CF-0	10/12/23 GA-		10/12/23 GA-	10/12/23 CF-0	Warehouse Acti
CF-GA1016	CF-GA913	CF-GA240	CF-GA330	CF-GA270	CF-GA260	CF-GA140	CF-GA160	CF-GA150	CF-GA050	CF-GA040	CF-GA034	CF-GA030	CF-GA230	GA-1001	GA-1010	CF-HH-1451	CF-HH-3011	CF-HH-3013	CT-VC15-HRDW	CF-GA460	GA-B3827	GA-B3814	GA-1006A	CF-GA250	Warehouse Activity Header: Tvpe: Pick. No.: PK0584182PK0584182
CF-246P-S448	CF-246P-S448	CF-246P-S448	CF-246P-S448	CF-246P-S448	CF-246P-S448	CF-246P-S448	CF-246P-S448	CF-246P-S448	CF-246P-S448	CF-246P-S448	CF-246P-S448	CF-246P-S448	CF-246P-S448	CF-246P-S448		CF-246P-S448	CF-246P-S448	CF-246P-S448	CF-246P-S448	CF-246P-S448	CF-246P-S448	CF-246P-S448	0	CF-246P-S448	No.: PK0584182PK0
Nut Hex Plasted Coarse 1/4" V	Bolt/HH 1/4" x 3/4" Grade 5 Cad Pitd B9970030	Tek Screw HWH w/o washer 14-14, 1" Galv	Splice Gable End Connector S0001100	Tab Turnbuckle w/ bend (2) 9/16" hole 1200 Series T0035920	Eyebolt welded 3/8" x (3" shank) T0000330	Cable Clamps Galv 3/16" C9970230	Nut Hex Pltd Coarse 3/8" 3/8-16 Zinc	Nut Hex Coarse 1/4" Zinc 43834	Bolt/HH 3/8 x 2-1/4 A-307 Zinc	Bolt/HH 3/8 x 1 3/8-16 Zinc gr 5	Carriage Bolt 5/16" x 3-1/2" B9971530 V	Bolt/HH - 1/4" x 3/4" 1/4-20 Zinc gr5	Tek Screw, 10-16 x 3/4" #10 Zinc, HWH w/o washer S9970010		Vasher 1	١		Heater Hanger Threaded Rod 3/8" x 12" H0030130		~	Bolt/HH 3/8 x 2-3/4 B9970510 (Xtrue Dury)	2	Glazing Cap Screws #10 x 1/2" 100/bag		
PICK	PICK	PICK	PICK	PICK	PICK	PICK	PICK	PICK	PICK	PICK	PICK	PICK	PICK	PICK	PICK	PICK	PICK	PICK	PICK	FICK					
L04-2K	L04-2J	L04-2G	L04-2F	L04-2E	L04-210	L04-2C	L04-1H	L04-1G	L04-1F	L04-1E		L04-1C	L04-18	L04-1A	L04-0E		L04-08	L04-0A	L03-3A	LU3-ZF	LU3-ZD	L03-2B	LU3-1G		
10	16 1/0 1	1/10		4	C		276 //	108	126			212	1 4	22/ 22/	32 4	e la					in all			S R	

C

GMINICH				Nov
HOL.FRANKLIN	Page		12:	November 13,
KLIN	4	:.	13:24	2023

Picking List

-

)

•

C	V09-2 0	PICK	48 Eve Girt 12' for 1200 series cold frame	CF-246P-S448	10/12/23 CF-GA700	10/1
	V08-1A 36	PICK	48 and 6' walls & 1100 series 6' walls	CF-246P-S448	10/12/23 CF-GA085	10/1
	U04-1 16	PICK		CF-246P-S448	10/12/23 GF-9001D-12	10/1
0		PICK	48 Purlin 5" x 12'4" 1200 series 20, 24, 30'w sides P0000860	CF-246P-S448	10/12/23 CF-GA190	10/1:
	U01-1 0	PICK	48 Purlin 5" x 12'4" 1200 series 20, 24, 30'w ridge P0000850	CF-246P-S448	10/12/23 CF-GA180	10/1:
7	T05-1 0	PICK	CF-246P-S448 Spring Top Lock-Wiggle Wire 6' 4-1/2" Coated Galvanized Spring- Wiggle Wire	CF-246P-S44	10/12/23 GF-9002-PVC	10/1:
a '	T05-1 0	PICK	CF-246P-S448 Spring Top Lock-Wiggle Wire 6' 4-1/2" Coated Galvanized Spring- Wiggle Wire	CF-246P-S44	10/12/23 GF-9002-PVC	10/12
	S05-5 0	PICK	CF-246P-S448 Rool Cell Girt K0000786 12' long	CF-246P-S44	10/12/23 CG-CON-KC12W	10/12
	S02-1 2	PICK	Stainless Steel Trough for 6" pads 5' extension	EV-SS6-05	05/23 EV-TR6-05	10/05/23
50	S01-1 2	PICK	Stainless Steel Trough for 6" pads 10' starter system \checkmark	EV-SS6-01	05/23 EV-TR6-01	10/05/23
	R06-5 8	PICK	8 Heater Hanger Adj Flat Bar To Arch 8' H0021450	CF-246P-S448	12/23 CF-HH-1450	10/12/23
5 T	R06-1 16	PICK	Aluminum Glazing Cap A0070379 16' section		7/23 PCP-EX-GC816	10/17/23
	R06-1 16	PICK	→ Aluminum Glazing Bar 16' A0070389 16' section 🗸		7/23 PCP-EX-GB-16	10/17/23
5		PICK	B OHeater Hanger Support Tube 1/2" (3ft) H0020450	CF-246P-S448	2/23 CF-HH-0450	10/12/23
Ð	R02-1 8	PICK	B Alum Combo Straight 7' A0000254	CF-246P-S448	2/23 CF-GA295	10/12/23
	~	PICK	Brace Cable 3/16" x 1' Vinyl Coated Galvanized Cable	CF-246P-S448	2/23 GA-BC001	10/12/23
			Brace Cable 3/16" x 1' Vinyl Coated Galvanized Cable	CF-246P-S448	2/23 GA-BC001	10/12/23
0				CF-246P-S448	2/23 CF-GA472	10/12/23
			CF-246P-S448 Conn Column To Arch 1200 Series C0155490	CF-246P-S448	2/23 CF-GA136	10/12/23
	P01-1A 36		Conn Column to ArchClamp 2-7/8 1200 Series 1100 6' C0155501 V	CF-246P-S448	2/23 CF-GA135	10/12/23
0 362	-		Heater Hanger Mounting U H0030120	CF-246P-S448	2/23 CF-HH-3012	10/12/23
A	_		1 Chord Support Tube C0055359 for 24' 1200 1 pc 34" 🗸	CF-246P-S448	2/23 CF-GA871	10/12/23
			Tab Side Girt Wood, 2-7/8" Column T003070	CF-246P-S448	2/23 CF-GA473	10/12/23
				CF-246P-S448	2/23 FA-SFSH-36	10/12/23
			РК0584182	vpe: Pick. No.: PK0584182.	Warehouse Activity Header: Type: Pick. No.: PK0584182PK0584182	Wareh

Picking List IGCUSA

.

 \langle

.

November 13, 2023 12:13:24 Page 5 GMINICHOL,FRANKLIN

Warehouse Activity Header: Type: Pick. No.: PK0584182..PK0584182

10/12/23 CF-GA125	CF-246P-S448	Shutter Fan Support 5" Girt
10/12/23 CF-GA091	CF-246P-S448	1200 Series Arch 24' (1/2 arch) C0055357
10/12/23 CF-GA136	CF-246P-S448	CF-246P-S448 Conn Column To Arch 1200 Series C0155490
10/12/23 CF-GA220	CF-246P-S448	CF-246P-S448 Splice Chevron ASMB, 9-1/2" 1200 Series S0000995 V

.

PICK	PICK	PICK	PICK	
WH2-FLR1-3	W05-1A	V13-7	V11-2	
18	36	0	0	
N) O		19	1	7

Picking List IGCUSA

November 7, 2023 7:21:09 AM Page 1 GM/BRYAN.HOBBS

Warak ÷ ļ

	10/17/23 FA-VSF-30300	10/17/23 GF-9011	10/17/23 GF-9010 🗸		10/17/23 GF-9016	10/17/23 GF-9012	10/17/23 GF-9008		Due Date Item No. Parent Item		Sorting Method Shelf or Bin	Assigned User ID GM\DEANA.FORD		No. PK0582983	Location Code UA-IL
Luis 11-15-23	Commercial Shutter Fan VES30, 30" diameter	Inflation Blower Mounting Bracket	Air Transfer Gasket	1/4"- 20 Nylon Insert Lock Nut	1/4"- 20 x 1" Phillips Pan Head Machine Screw	PV Plug for Inflation Kit	3-1/8" Hose Clamp		Description	Merced, CA 95348 USA	PO 0050858	3600 M St	Andrew Codd	Merced Comm College Dist	Ship To: C003129
22	PICK	PICK	PICK	PICK	PICK	PICK	PICK		Zone Code						Sales Order:
34	D146	BRC510D	BRC510C	BRC510B	BRC510B	BRC510A	BRC510A		Bin Code					Assembly Order:	'der:
16×04×34	2	2	، 4	თ	6	2	N		Qty. (Base)						SO00080563
	Ch./	ma	A	VI	Ĩ			/	Qty. Handled)563

14926s •

1000

								Bil	l of	Ladin
Shipment ID / BOL SM0160210				Pickup Carr stes Expr 09-862-3311 F	ess L	ine		2		
Ready Date: 11/7/	2023				·					
Shipper Name: Address: City: Contact:	Greenhouse Megasi 70 East Gate Dr Danville Bryan Hobbs	tore / BFG Sup State/Prov Phone:	vince: IL	17)709-1837	Postal Fax:	Cod	e: 6	1834	Count	ry: USA
Destination Name: Address: City:	MERCED COMM CO 3600 M ST PO0050858 Merced	LLEGE DIST State/Prov			Postal	Cod	e: 9	95348	Count	ry: USA
Contact:	ANDREW CODD	Phone:	(2))9)386-6778	Fax:					
Pieces Contain	er HM Des	cription	ltem Reference	Dimensio	ns (in)	CL	~_NMF	C #	Cubic Feet	Weight (lbs)
1 Pallets	FANS, NO BOXES, DRUMS	DI, IN CRATES OR	Kerenee	48 x 40 x 4	1	250	64580	4	5.6	149
									5.6	149
	IONS: DO NOT D	OUBLE STACI	K CALL 24	HOURS BEFO	ORE			4		
REFERENCE NUME Order #: SO80563	BERS:	OUBLE STACI	K CALL 24	HOURS BEFO				4		
SPECIAL INSTRUCT	BERS: VICES: ropoff	OUBLE STAC	K CAL 24	Lui		,-D	_3	4		
SPECIAL INSTRUCT REFERENCE NUME Order #: SO80563 ADDITIONAL SER • Limited Access Di • CALIFORNIA COM • Liftgate	BERS: VICES: ropoff IPL. SURCHARGE		<u>5</u>	ليبن	(1-15	,-Q	_3			
SPECIAL INSTRUCT REFERENCE NUME Order #: SO80563 ADDITIONAL SER' • Limited Access Dr • CALIFORNIA COM • Liftgate Lability Limitation for loss or of RECEIVED, subject to individual lassification and rules that has sertify that the herein-named	BERS: VICES: ropoff IPL. SURCHARGE damage on this shipment m ally determined rates or cont ave been established by the materials are properly class	ay be applicable. S tracts that have bee carrier and are ava ssified, described, p	See 49 U.S.C. s 1 en agreed upon ailable to the si	4706(c)(1)(A) an in writing between ipper, on request	$(- 1 \le 1$	r and s applic	shipper, if able state	applicabl and fede	e, otherw ral regula	ise to the rate
SPECIAL INSTRUCT REFERENCE NUME Order #: SO80563 ADDITIONAL SER • Limited Access Di • CALIFORNIA COM • Liftgate lability Limitation for loss or of ECEIVED, subject to individua lassification and rules that ha ertify that the herein-named pplicable regulations of the of Freight Charges	BERS: VICES: ropoff IPL. SURCHARGE damage on this shipment m ally determined rates or cont ive been established by the materials are properly clas department of transportation is Terms: PRE-P	ay be applicable. S tracts that have bee carrier and are ava isified, described, p on.	See 49 U.S.C. s 1 en agreed upon ailable to the si	4706(c)(1)(A) an in writing between ipper, on request	$(- 1 \le 1$	r and s applic	shipper, if able state	applicabl and fede	e, otherw ral regula	ise to the rate
SPECIAL INSTRUCT REFERENCE NUME Order #: SO80563 ADDITIONAL SER • Limited Access Di • CALIFORNIA COM • Liftgate Lability Limitation for loss or of RECEIVED, subject to individual classification and rules that has control to the individual control to the indition to the indit	BERS: VICES: ropoff IPL. SURCHARGE damage on this shipment m ally determined rates or cont ave been established by the materials are properly class department of transportation Terms: PRE-P rges to:	ay be applicable. S tracts that have bee carrier and are ava isified, described, p on.	See 49 U.S.C. s 1 en agreed upon ailable to the si	4706(c)(1)(A) an in writing between ipper, on request	$(- 1 \le 1$	r and s applic	hipper, if able state condition :	applicabl and fede for transp	e, otherw ral regula sortation	ise to the rate
SPECIAL INSTRUCT REFERENCE NUME Order #: S080563 ADDITIONAL SER • Limited Access Di • CALIFORNIA COM • Liftgate Liability Limitation for loss or of RECEIVED, subject to Individual classification and rules that ha certify that the herein-named applicable regulations of the of Freight Charges Bill freight char BFG SUPPLY CO C/O AFS	BERS: VICES: ropoff IPL. SURCHARGE damage on this shipment m ally determined rates or cont ave been established by the materials are properly class department of transportation Terms: PRE-P rges to:	ay be applicable. S tracts that have bee carrier and are ava isified, described, p on.	See 49 U.S.C. s 1 en agreed upon allable to the si packaged, mark	4706(c)(1)(A) an in writing between ipper, on request	$(- 1 \le 1$	r and s applic	hipper, if able state condition :	applicabl and fede for transp	e, otherw ral regula sortation	ise to the rate ations. This is according to 3)798-21

Printed on Tuesday, November 7, 2023

IGCUSA	Picking
	List

November 7, 2023 7:21:09 AM Page 1 GMBRYAN.HOBBS

10/17/23 FA-VSF-30300	10/17/23 GF-9011		10/17/23 GF-9017	10/17/23 GF-9016	10/17/23 GF-9012	10/17/23 GF-9008	Due Date Item No.	Warehouse Activity Header Location Code No. Assigned User ID Sorting Method
							Parent Item	Warehouse Activity Header: Tvoe: Pick. No.: PK0582983PK0582983 Location Code DA-IL No. DA-IL PK0582983 Sorting Method GM\DEANA.FORD Shelf or Bin
Commercial Shutter Fan VES30, 30" diameter	Inflation Blower Mounting Bracket	Air Transfer Gasket	1/4"- 20 Nylon Insert Lock Nut	1/4"- 20 x 1" Phillips Pan Head Machine Screw	PV Plug for Inflation Kit	3-1/8" Hose Clamp	Description	- K0582983 Ship To:
diameter				ine Screw				C003129 Merced Comm College Dist Andrew Codd 3600 M St PO 0050858 Merced, CA 95348 USA
PICK	PICK	PICK	PICK	PICK	PICK	PICK	Zone Code	Sales Order: Assembly O
D146	BRC510D	BRC510C	BRC510B	BRC510B	BRC510A	BRC510A	Bin Code	Drder: bly Order:
2	2	` 4	6	0	2	2	Qty. (Base)	SO00080563
mes	M		1	1	1		Qty. Handled	80563

luis 11-15-23

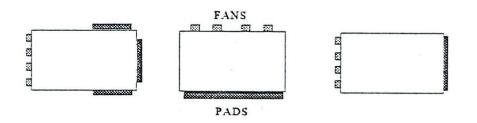
48× 40×41

Warehouse Activity Header: Type: Pick. No.: PK0585808PK0585808
Type:
Pick.
No.: I
PK0585808PK0585808

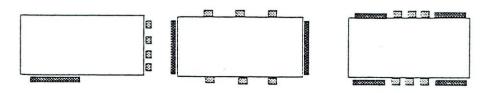
10/17/23 GF-9003	Due Date Item No.	Sorting Method	Assigned User ID	No.	Location Code	Warehouse Activitv Head
	Parent Item		GMIDEANA.FORD	PK0585808	DA-IL	Warehouse Activity Header: Type: Pick. No.: PK0585808PK0585808.
Inflation Fan Jumper Kit	Description				Ship To:	.PKU5858U8
		Merced, CA 95348 USA	3600 M St	Merced Comm College Dist Assembly Order: Andrew Codd	C003129	TR
PICK	Zone Code			Assemt	Sales Order:	
L248C	Bin Code			oly Order:	rder:	
2 MA	Qty. Qty. (Base) Handled				SO00080563	

505 North Hutcheson, Houston, Texas 77003-1399, Phone: 713 228-9421, Fax: 713 228-9425

INSTALLATION INSTRUCTIONS FOR QUIETAIRE STAINLESS STEEL COOLING SYSTEM

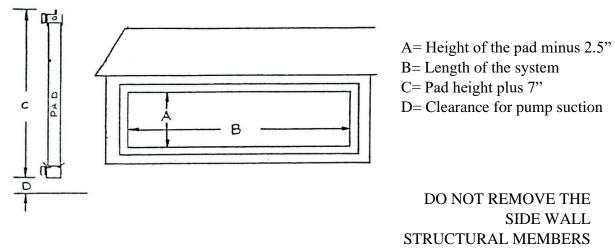

COMPONENTS

- 1. Cooling pads- pads come 4" thick and 12" wide X 24", 36", 48", 60", and 72" high. Pads may be stacked for higher system.
- 2. Trough, pump, piping and top cover are furnished with kit.
- 3. Customers must furnish framing material.


LOCATION OF THE FAN AND PAD SYSTEM

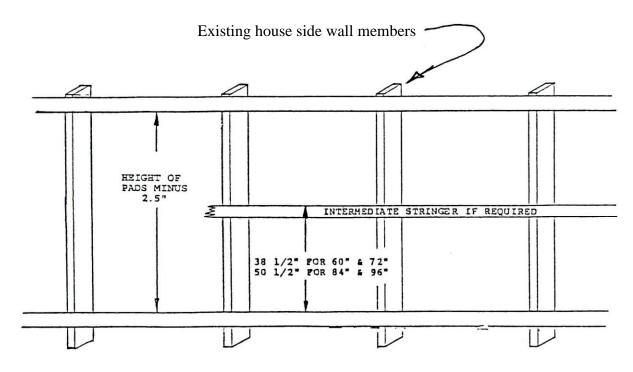
The cooling pads should be placed in the opposite wall from the fans and should be no more than 250 feet apart to avoid excessive temperature rise and air velocity. The top of the pads should be located near the top of the items to be cooled.

TYPICAL LAYOUT WHEN PAD TO FAN DISTANCE IS 250' OR LESS



TYPICAL LAYOUTS WHEN PAD TO FAN DISTANCE EXCESS 250'

FRAME OPENING

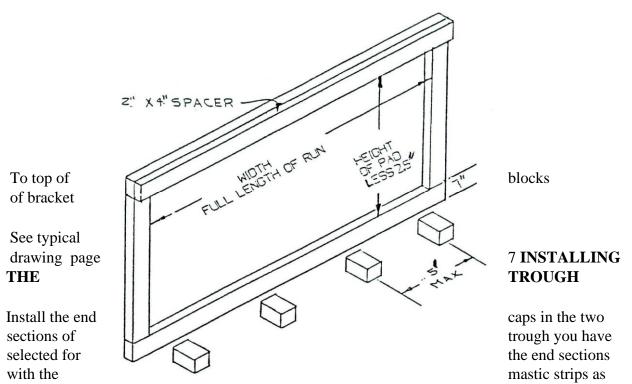

A quality product that lives up to its name

SUPPORT STRINGERS

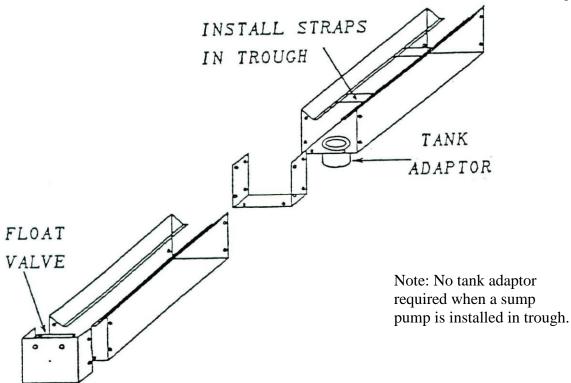
The support stringers can be metal or wood and should provide a flat surface for mounting support brackets. The lower stringer should be strong enough to support 2 ³/₄ pounds per square foot of pad if the trough is to be hung on a stringer with brackets. The trough can also be set on blocks. The rough must be installed level.

When pads over 48" tall or two pieces are used an intermediate stringer ³/₄" thick must be installed to prevent pads from blowing out. See drawing below

SUMP TANK


There is no need for a water collecting sump or reservoir as the trough ahs sufficient capacity to act as such.

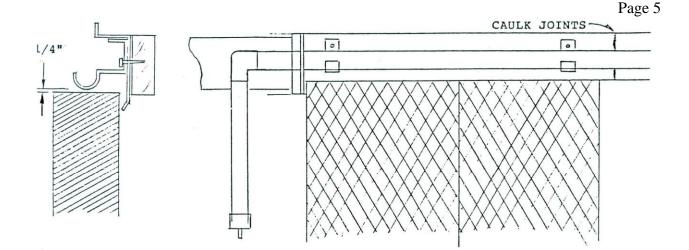
INSTALLING THE SYSTEM


After all the framing has been installed and dimension shave been checked the system components can be installed. Locate all of the packages of the system and sort out the basic package that contains the fittings, end caps, the trough with pump suction hole etc. start with this package.

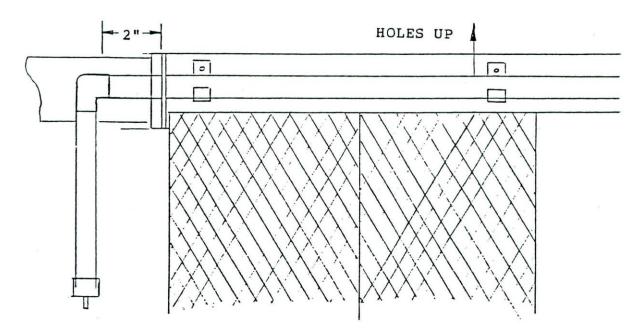
INSTALLING THE TROUGH SUPPORT

Set support blocks on a level line and place trough on the blocks

shown. Install the end cap that will have the float valve mounted in it where you wish to bring in the water supply. Install the tank adaptor as shown. The tank adaptor may be installed at the end of short runs (up to 40') but should be in the center of longer runs.



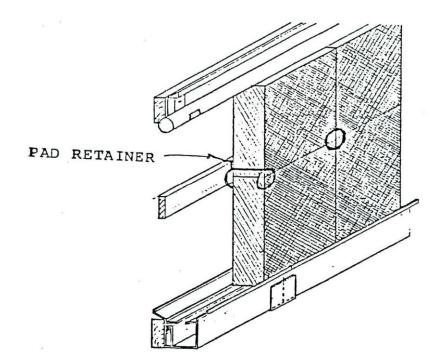
Place the mastic strips inside of the u connector and bolt together with the trough.

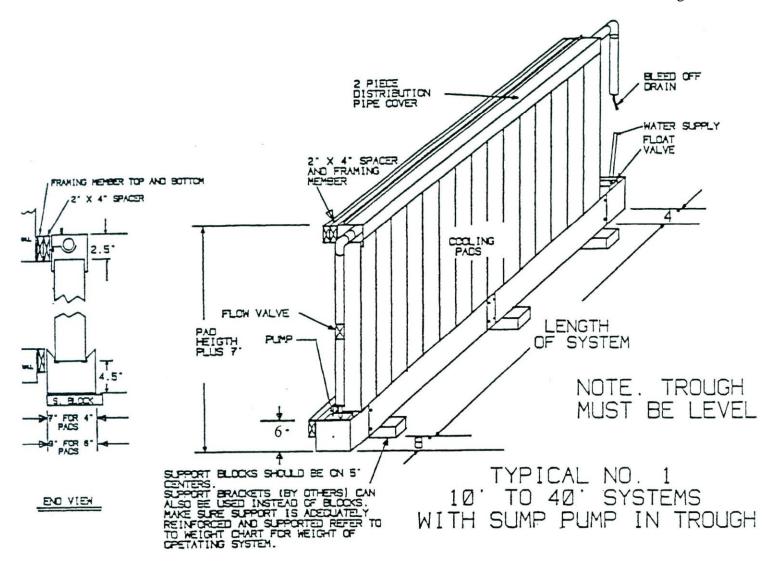

NOTE: The trough, trough ends and u connectors must be cleaned of the oil film or the mastic strips will not stick and seal. Acetone works best and leaves no oily residue.

INSTALLING THE TOP OF THE SYSTEM

Place a pad (2 if double stacked) at each end and in the idle of the trough. Next using a top cover back and pipe support mark the location of the mounting hole at each end and the middle of the system and run a chalk line through these marks. Use this line to line up the top cover back and pipe supports and install with ¹/₄ X 1 ¹/₄ screws. Caulk the top cover back joints as shown.

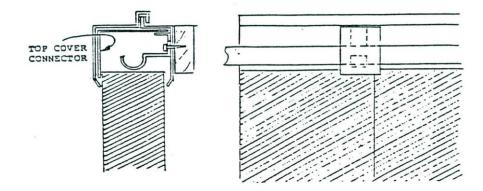
INSTALLING THE DISTRIBUTION PIPE


INSTALLING THE DISTRIBUTION PIPE Con't


Install the end cap over the distribution pipe and secure with 2-1/4 X 1 ¼ screws as shown. Next cement an elbow, 2' piece of pipe and the treaded adapter to the distribution pipe as shown. Screw the bleed off fitting into the threaded adapter and attach the bleed off tubing as show, the bleed off tubing should run to the out side of the housed or to a drain.

INSTALLING THE PADS

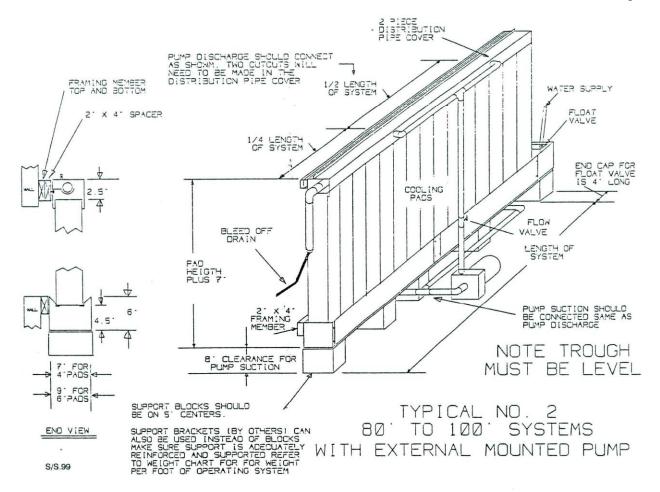
Place the pads in the trough so that they sit on the support lip. If 5' or taller one piece or two piece pads are used pad retainers are required. Install the retainers as shown on the drawing. To install or remove the pads, simply rotate the retainers 90 degrees.

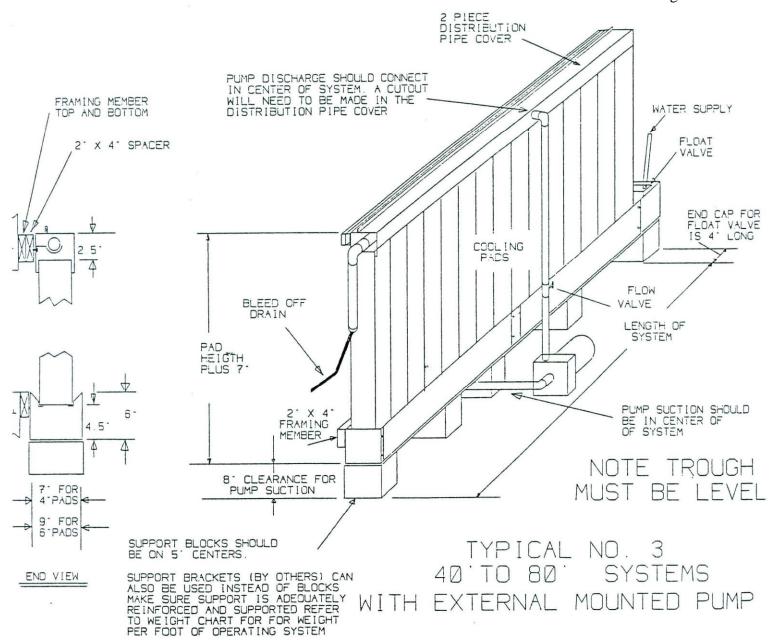


Wet pads and trough system
weight per foot in pounds

Height	4" pads	6" pads
3'	21	28
4'	24	32
5'	27	36
6'	30	40

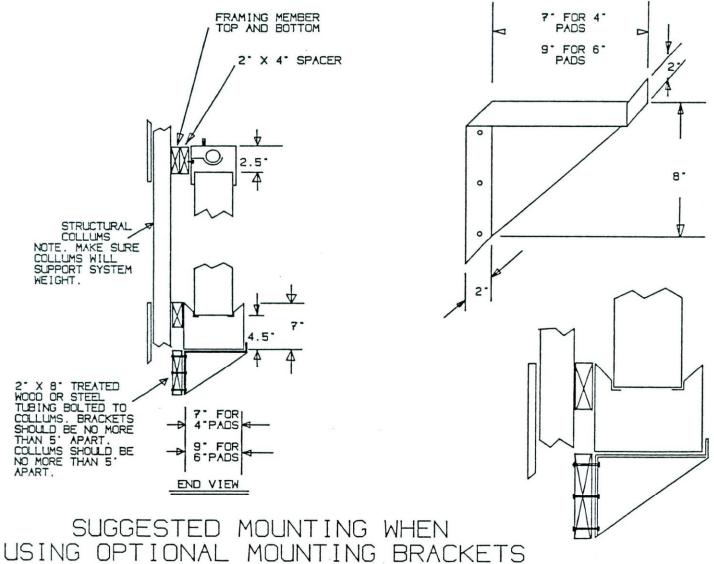
INSTALLING THE FRONT OF THE TOP COVER


Install the first top cover section, the insert a top connector leaving half of it sticking out. The half sticking out will be covered with the nest top cover. Continue this process until all of the top cover is installed.



PLUMBING INSTALLATION

All items installing the plumbing are included with the system. Refer to the drawing for assembly.



Page 10

Page

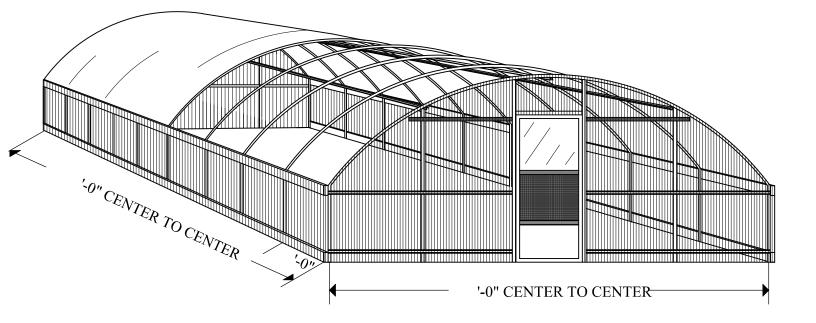
11

OPTIONAL MOUNTING BRACKETS



NOT INCLUDED WITH TROUGH SYSTEMS ORDER PART NO. TRMB1-4" OR TRMB1-6"

- 1. Turn on the water supply and let the trough fill up through the float valve. Set the float valve so the water level is 1" to 2' below the pad support lip in the trough. Refer to the instructions packed with the float valve.
- 2. Prime the pump.
- 3. Run the system with the end plugs of the distribution pipe removed to flush out the system. Turn off the pump and replace the plugs.
- 4. Turn the pump back on and make sure all the distribution holes are open. Turn the pump off and install the distribution pipe front cover.
- 5. Turn the pump back on and adjust the flow valve so all the pads are wet.
- 6. If the flow valve is open too much water will leak out at the point where the top cover contact the pads.


MAINTENANCE

- 1. Drain the trough and system as required to remove sediment.
- 2. Make sure all parts of the system are working properly. Flow valve, pump, float valve, etc.
- 3. Check pads for algae growth. To prevent algae growths follow these suggestions.
 - A. Use chlorinated make up water or well water. Do not use water form stock ponds.
 - B. Run fans until pads are dry after turning off system.
 - C. Keep the pads shaded to prevent sunlight from promotion algae growth.
 - D. An algaecide may be added if necessary.
- 4. Maintain PH of the water between 6 and 9 to prevent damage to the pads.
- 5. Keep the sodium chloride concentrate (salt) below 40,000 ppm to prevent build up on the pads.
- 6. if pads are within reach of livestock or poultry a guard should be installed.

COLD FRAME 1200 GREEN HOUSE SYSTEM

IMPORTANT!!!! NON - CODE COLD FRAMES REPRESENT A NON - CODE- NON ENGINEERED DESIGN WITH CERTIFICATION UNAVAILABLE. IT IS NOT RECOMMENDED THAT THIS HOUSE BE UTILIZED IN REGIONAL AREAS REPRESENTING SNOW OR HIGH WIND FACTORS.

20'-0" or 24'-0" WIDE WITH LEGS INSTRUCTION MANUAL

INTRODUCTION

SHOULD YOU HAVE ANY QUESTIONS CONCERNING THESE INSTRUCTION, COMPONENTS ETC..., PLEASE CONTACT US DIRECTLY. WE WELL BE GLAD TO ANSWER ANY QUESTIONS CONCERNING OUR MANUFACTURED PRODUCT.

INCLUDED IN THIS PACKAGE ARE INSTRUCTIONS AND DETAILED DRAWINGS PERTAINING TO YOUR CONLEY'S GREENHOUSE SYSTEM. STUDY THE INSTRUCTIONS BEFORE BEGINNING CONSTRUCTION TO BECOME FAMILIAR WITH OUR PRODUCT AND HOW IT IS ASSEMBLED.

STORE ALL MATERIALS OFF THE GROUND ON WOOD BLOCKS. PROTECT ALL YOUR MATERIALS FROM THEFT AND/OR DAMAGE. YOU MAY WISH TO DISCUSS BUILDERS RISK INSURANCE WITH YOUR INSURANCE AGENT.

DISCLAIMER

THE FOLLOWING INSTRUCTIONS ARE GIVEN AS SUGGESTED GUIDELINES FOR GENERAL INSTRUCTIONS. CONLEY'S MANUFACTURING AND SALES OR ANY OF THEIR EMPLOYEES SHALL NOT BE RESPONSIBLE RESULTING FROM PURCHASERS IMPLEMENTATION OF THESE INSTRUCTIONS. PURCHASERS ALONE SHALL RESPONSIBLE FOR CONFORMANCE WITH ALL APPLICABLE LAWS, ORDINANCES, AND SAFETY STANDARDS IN CONSTRUCTING THIS GREENHOUSE AND ALL EQUIPMENT INSTALLED THEREIN.

NOTICE TO CONLEY'S CUSTOMERS PROTECT YOURSELF FROM ADDED COSTS

ALL PRODUCTS ARE SOLD F.O.B. SHIPPING POINT, AND THE ATTACHED MEMORANDUM COPY OF BILL OF LADING THAT INDICATES THAT MATERIAL SHIPPED HAS NOW, BY LAW, BECOME YOUR PROPERTY AND IS AN ACKNOWLEDGMENT BY THE TRANSPORTATION COMPANY OF THE RECEIPT OF THE MATERIALS IN GOOD CONDITION.

SAFE DELIVERY OF THIS SHIPMENT IS NOW THE RESPONSIBILITY OF THE CARRIER WHO ACTS AS YOUR AGENT. WE WILL BE GLAD TO RENDER ASSISTANCE TO TRACE AND RECOVER LOST GOODS.

EXAMINE THE SHIPMENT CAREFULLY BEFORE SIGNING THE FREIGHT BILL. IF ANY DAMAGE IS NOTED, OR OF THE NUMBER OF PIECES DOES NOT AGREE WITH THE BILL OF LADING, INSIST THAT SHORTAGE OR DAMAGE BE NOTED ON THE FREIGHT BILL BY THE CARRIERS AGENT. FAILURE TO DO SO MAY JEOPARDIZE YOUR RECOVERY.

DO NOT REFUSE SHIPMENT AS THIS IS YOUR PROPERTY AND REFUSAL CAUSES UNNECESSARY DELAYS AND SHORTAGE EXPENSES. ARRANGE WITH CARRIER WITHIN 15 DAYS TO INSPECT AND MAKE REFERENCE THERE TO ON THE FREIGHT BILL. CONSULT YOUR CARRIER FOR DISPOSITION OF DAMAGED ARTICLES.

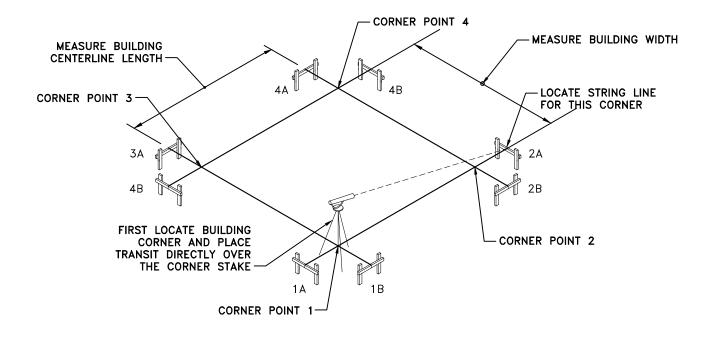
MAKE YOUR CLAIM PROMPTLY, THE TRANSPORTATION COMPANY WILL NOT CONSIDER A CLAIM UNLESS IT IS PRESENTED WITHIN (9) MONTHS FROM THE DATE OF SHIPMENT. CARRIERS AGENT WILL ASSIST YOU IN PREPARING A CLAIM.

CLAIMS FOR LOSS OR DAMAGE AND TRANSPORTATION CHARGES RESULTING FROM SHIPPING, MUST NOT BE DEDUCTED FROM THE INVOICE, NOR PATENT INVOICES WITH HELD AWAITING ADJUSTMENT OF SUCH CLAIMS, SINCE IT IS THE FUNCTION OF THE CARRIER TO GUARANTEE SAFE DELIVERY.

CHECK THE ITEMS RECEIVED WITH THE INVOICE. OF THERE IS ANY DISCREPANCY CONTACT US IMMEDIATELY GIVING FULL PARTICULARS. CLAIMS FOR SHORTAGE ATTRIBUTED TO OUR COUNT IN PACKAGE MUST BE MADE WITHIN 10 DATES FORM THE SHIPMENT IS RECEIVED.

NO MERCHANDISE MAY BE RETURNED FOR CREDIT WITHOUT A RETURN GOODS TAG AND SHIPPING INSTRUCTIONS FROM THE FACTORY.

WARRANTY


CONLEY'S MANUFACTURING AND SALES, THEIR EMPLOYEES OR REPRESENTATIVES, WILL NOT BE RESPONSIBLE FOR ANY DAMAGES TO GREENHOUSE COVERINGS, STRUCTURES, CROPS OR EQUIPMENT WHEN USED IN CONDUCTION WITH OUR TUBE - LOCK, OR ANY OTHER LOCKING DEVICE MANUFACTURED BY CONLEY'S MANUFACTURING AND SALES OR OTHERS.

GRADE AND PREPARE THE BUILDING SITE

- 1. REMOVE THE GRASS AND DEBRIS DOWN TO SOLID SOIL.
- 2. LOCATE THE BUILDING CORNERS AND SET THE GRADING STAKES 5' BEYOND THE CORNERS.
- 3. A TRANSIT LEVEL IS NEEDED TO SURVEY THE AREA OF THE BUILDING. IN ORDER TO INSURE PROPER DRAINAGE AND EVEN HEATING, THE WIDTH SHOULD BE SET LEVEL AND THE LENGTH SHOULD BE SET LEVEL WITHIN APPROXIMATELY 1%.
- 4. CUT AND FILL THE SITE UNTIL IT IS AT THE RECOMMENDED GRADE.

LAYOUT AND SQUARE THE FOUNDATION

- 1. ROUGHLY LOCATE THE CORNERS OF THE BUILDING AND DRIVE IN THE CORNER STAKES.
- 2. SET BATTER BOARDS APPROXIMATELY 6' (OR ADEQUATE DISTANCE FROM AUGER CLEARANCE) BACK FROM THE CORNERS IN EACH DIRECTION. SET INTERMEDIATE BATTER BOARDS OF THE BUILDING IS LONGER THAN 50 FEET TO KEEP THE LINES FROM SAGGING OR BLOWING IN THE WIND.
- 3. LOCATE THE FIRST BUILDING CORNER POINT AND MARK IT WITH A STAKE OR NAIL HEAD.
- 4. MEASURE FROM CORNER POINT 1, THE SPECIFIED DIMENSION OF THE BUILDING, TO LOCATE CORNER POINT 2. PULL A TIGHT LINE BETWEEN BATTER BOARD "1A" AND BATTER BOARD "2A", MAKING SURE THE LINE PASSES OVER CORNER POINT 1 AND CORNER POINT 2. FASTEN THE LINE THE BATTER BOARDS AND CHECK IT WITH TRANSIT. MAKE SURE THE BATTER BOARDS AND LINES ARE LEVEL (SEE FIG. 1). VARIATIONS IN THIS WILL ULTIMATELY AFFECT THE EAVE HEIGHT.

SEE PAGE 7 FOR GUTTER CONNECTED HOUSES

FIGURE 1 - LOCATING CORNER POINT 2

5. TO LOCATE THE THIRD CORNER POINT (FIG 2), YOU MAY USE ONE OF TWO METHODS, THE DIAGONAL METHOD OR THE TRIANGLE METHOD.

THE DIAGONAL METHOD - RUN A LINE DIAGONALLY ACROSS FROM CORNER TO CORNER AND ADJUST THE LINES UNTIL THE DIAGONAL DIMENSIONS ARE EQUAL. (SEE FIGURE 3).

THE TRIANGLE METHOD - CREATE A 90 Ø ANGLE FROM THE FIRST LINE USING CORNER POINT 1 AS A VERTEX. THIS ANGLE MAY BE ACCOMPLISHED BY USING TWO TAPE MEASURES AND THE CHART LISTED BELOW (SEE FIGURE 4) (USE THIS METHOD FRO LARGER BUILDINGS WHERE THE LENGTH OF THE DIAGONAL EXCEEDS THE 100 FOOT TAPE MEASURE). WHEN YOU'VE LOCATED CORNER POINT 3, PULL YOUR SECOND LINE BETWEEN BATTER BOARD "1B" AND BATTER BOARD "3B" MAKING SURE IT PASSES OVER CORNER POINT 1 AND CORNER POINT 3. CHECK WITH TRANSIT MAKING SURE THAT BATTER BOARDS AND LINES ARE LEVEL (SEE FIG. 2.)

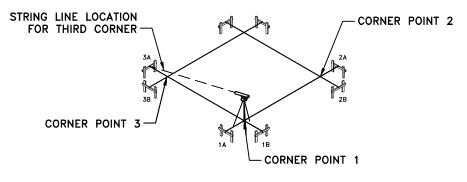


FIGURE 2 - LOCATING CORNER POINT 3

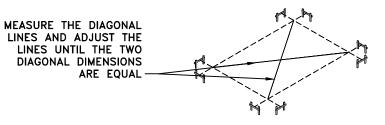


FIGURE 3 - DIAGONAL METHOD

	_
\neg	
•	

DIMENSION	A ² +	DIMENSION	B ² +	DIMENSION	C²
20'		15'		25'	
24'		18'		30'	
28'		21'		35'	
32'		24'		40'	
36'		27'		45'	
40'		30'		50'	

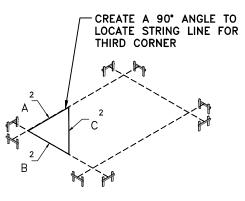


FIGURE 4 - TRIANGLE METHOD

- 6. TO LOCATE THE FOURTH CORNER POINT (FIGURE 5), USING TWO TAPE MEASURES, FROM CORNER POINT 3 AND CORNER POINT 2, THE SPECIFIED LENGTH AND WIDTH. THE POINT AT WHICH THESE LINES INTERSECT WILL BE CORNER POINT 4.
- 7. NOW YOU MAY PULL YOUR LAST TWO LINES AND FASTEN THEM TO THE APPROPRIATE BATTER BOARDS. BE SURE TO CHECK THE LEVEL OF YOUR LINES (FIGURE 5).

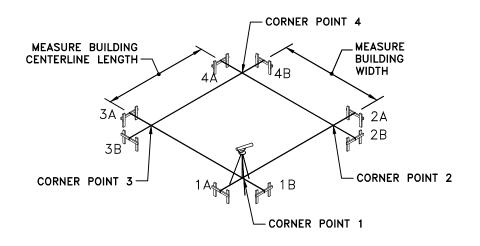


FIGURE 5 - LOCATING CORNER POINT 4

FIND COLUMN CENTERS

- 1. MARK THE CORNER POINTS ON THE LINES, AND USE A 100 FOOT TAPE MEASURE TO MARK THE INTERMEDIATE HOLE CENTERS ON THE LINES.
- 2. USING A LEVEL FOR VERTICAL ACCURACY, MARK THE HOLE CENTERS ON THE GROUND WITH NAILS. PAINT THE NAIL HEADS WITH FLUORESCENT PAINT.
- 3. MEASURE DOWN THE WIDTH OF THE LINES AND MARK THE END WALL UPRIGHT CENTERS IN THE SAME MANNER.

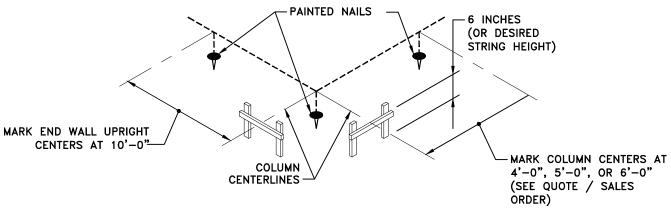
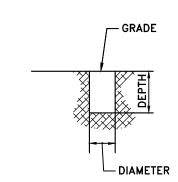
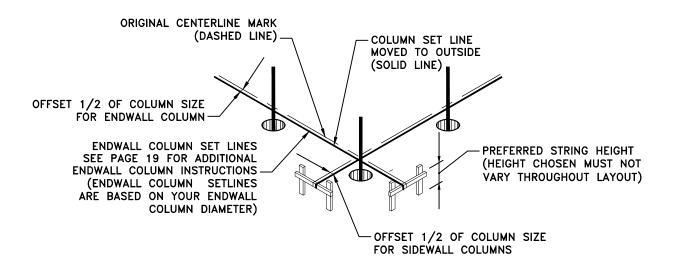



FIGURE 6 - LOCATING COLUMN CENTERS

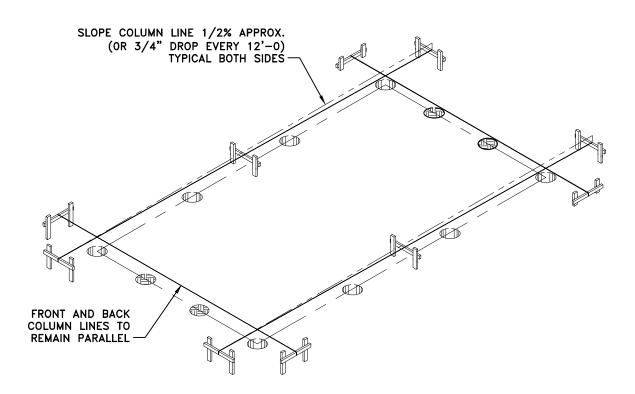
AUGER COLUMN HOLES

- 1. AT THE POINT THAT THE LINES MEET THE BATTER BOARDS, CLEARLY AND ACCURATELY MARK THE PLACEMENT OF THE LINES. MAKE SURE ALL THE BATTER BOARDS ARE MARKED.
- 2. REMOVE THE LINES.
- 3. AUGER HOLES TO REQUIRED DIMENSIONS.
- 4. AFTER DIGGING THE HOLES FOR END WALL UP RIGHTS, REFILL LOOSELY WITH DIRT, UNTIL READY FOR USE, (SEE FIGURE 9-PAGE 7).


BE SURE THERE ARE NO UNDERGROUND OR OVERHEAD ELECTRICAL WIRES, WATER PIPES, GAS LINES, ETC...ON OR NEAR THE JOB SITE.

CAUTION

FIGURE 7 - AUGER HOLE


OFFSETTING THE LINES

- 1. OFFSETTING OF THE LINES SHOULD BE DONE THE DAY THE CONCRETE IS POURED AND NOT LEFT OVERNIGHT TO PREVENT STRETCHING OR KNOCKING DOWN LINES.
- 2. TO FIND THE COLUMN SET LINES, YOU MUST RESTRING THE FOUNDATION LAYOUT. FROM THE CENTER LINE MARKS ON THE BATTER BOARDS, MEASURE 1/2 THE SIZE OF THE COLUMN AND MOVE THE LINES TO THAT MARK. (ALWAYS MOVE THE LINES IN THE SAME DIRECTION TO PREVENT CONFUSION AND MISPLACEMENT OF COLUMNS (SEE FIGURE 8) THESE OFFSET STRINGS WILL HELP AS GUIDES WHEN ALIGNING IN THE COLUMNS DURING THE CEMENTING PROCESS.

SLOPE LINES (GUTTER BUILDINGS ONLY)

1. SLOPE THE COLUMN LINES ALONG THE LENGTH OF THE FOUNDATION KEEPING THE FRONT AND BACK COLUMN LINES PARALLEL. THIS WILL INSURE PROPER DRAINAGE 9.

NOTE: THIS TECHNIQUE TO BE USED WITH GUTTER HOUSES ONLY

FIGURE 9 - SLOPING COLUMN LINES

MARK CENTERS ON COLUMNS

- 1. FROM THE CENTER LINE, MARK ON THE BATTER BOARDS (NOT THE COLUMN SET MARK) THE LENGTH OF LINES, AND MARK THE INTERMEDIATE CENTERS.
- 2. MARK THE END WALL UPRIGHTS IN THE SAME MANNER. PLEASE NOTE THAT THE OFFSETS FOR END WALL INTERMEDIATE COLUMNS MAY BE DIFFERENT THAN THE OFFSET OF THE SIDE WALL COLUMNS DUE TO THE DIFFERENCE IN COLUMN SIZE. THE CENTER LINES OF COLUMNS MUST BE THE CENTER LINE END WALL COLUMNS.

MARK COLUMNS

1. TO FIND THE ABOVE GROUND COLUMN HEIGHT, MEASURE FROM THE TOP OF THE COLUMN, THIS DISTANCE, AND SUBTRACT THE STRING HEIGHT. MARK THE COLUMN AT THIS POINT WITH A FELT TIP MARKER. CONTINUE WITH REMAINING COLUMNS. (SEE FIGURE 10).

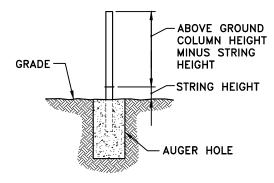
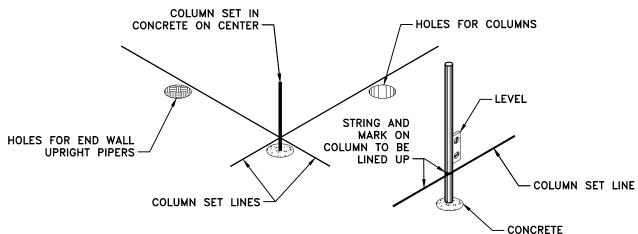
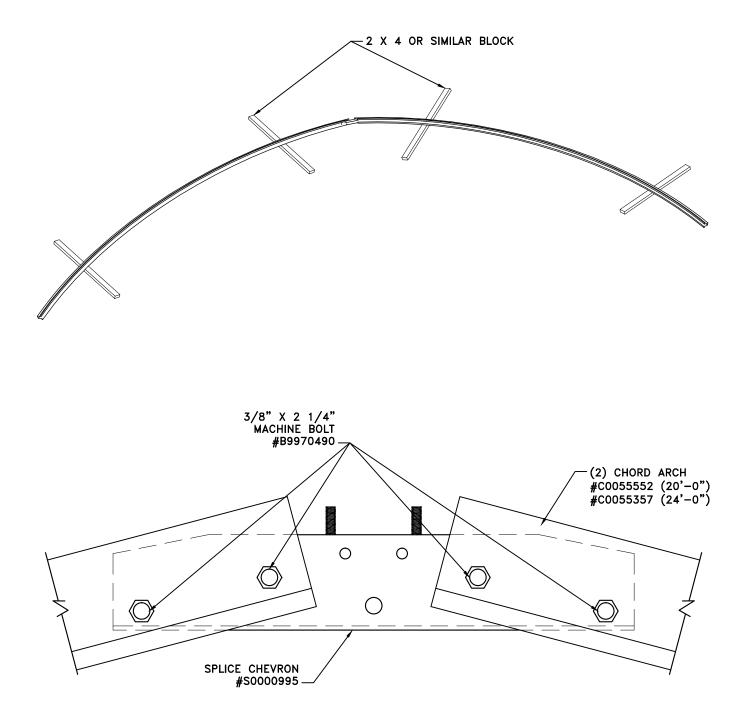



FIGURE 10 - MARKING COLUMNS

SET COLUMNS

- 1. POUR CONCRETE INTO THE FIRST HOLE. (2) 1/2" SLUMP IS THE MOST POPULAR MIX TO SUPPORT COLUMNS.
- 2. PUSH THE COLUMN INTO THE CONCRETE AT THE CENTER MARK ON THE STRING (BE SURE THE COLUMN ISN'T ACTUALLY TOUCHING STRING) UNTIL THE MARK ON COLUMN LINES UP WITH THE STRING. THE COLUMN MUST BE PLUMB IN BOTH DIRECTIONS BEFORE MOVING ON TO THE NEXT COLUMN.
- 3. MOVE ON TO THE NEXT COLUMN, POUR CONCRETE THEN SET THE COLUMN. NEVER POUR ALL THE CONCRETE FIRST THEN GO BACK AND SET COLUMNS, AS THE CONCRETE SETS UP TOO FAST.


CAUTION:

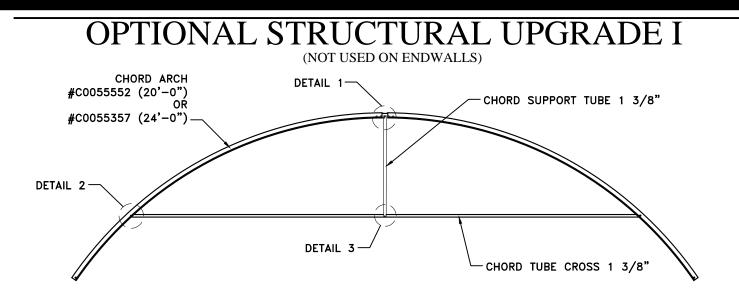
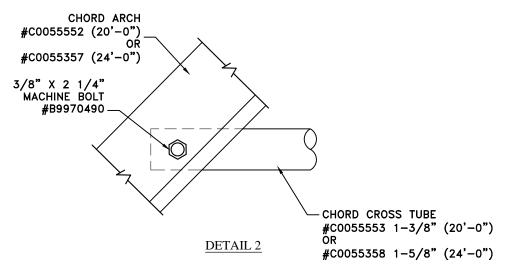
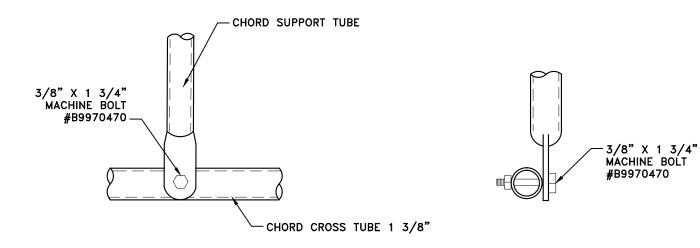

1. PLACE THE FIRST THREE ARCHES INTO THE FIRST THREE AUGURED HOLES. (SEE PAGE 6 FOR HOLE AUGURING).

FIGURE 11 - SETTING THE COLUMNS


ARCH ASSEMBLY

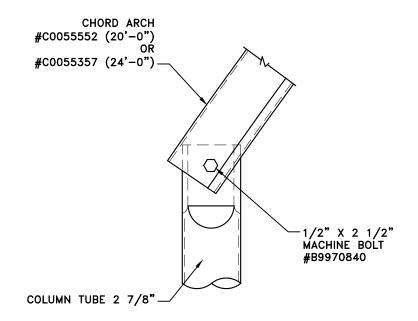
- 1. ASSEMBLE THE ARCHES USING (4) 2 X 4 BLOCKS TO LIFT THE ARCHES OFF THE GROUND FOR ASSEMBLY.
- 2. ATTACH THE ARCH HALVES TO THE CHEVRON SPLICE WITH (4) 3/8" X 2 1/4" MACHINE BOLTS.



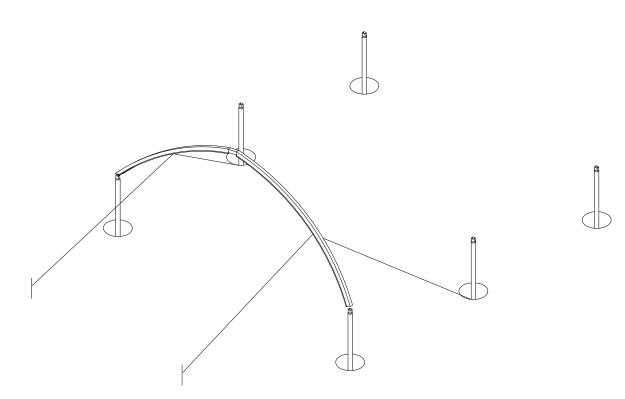

1. ATTACH THE CHORD SUPPORT TUBES TO THE CHEVRON SPLICE WITH (4) 3/8 X 2 1/4" MACHINE BOLT. PLACE 1 SUPPORT TUBE ON EACH SIDE OF THE CHEVRON SPLICE.

2. ATTACH EACH END OF THE CROSS BRACE TO THE CHORD ARCH WITH A 3/8" X 2 1/4" MACHINE BOLTS.

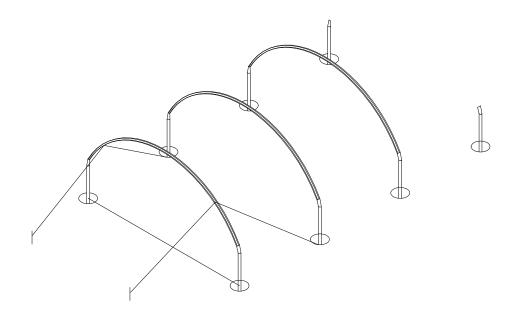
3. ATTACH THE CHORD SUPPORT TUBES TO THE CHORD CROSS TUBE WITH A 3/8" X 1 3/4" MACHINE BOLT PER CHORD SUPPORT.



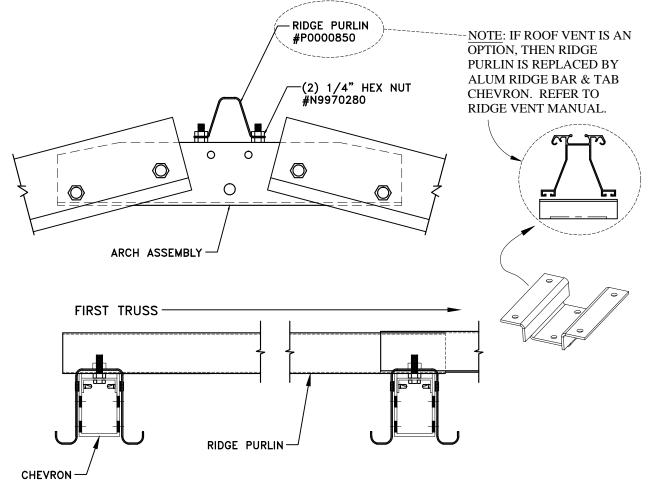
FRONT VIEW


SIDE VIEW

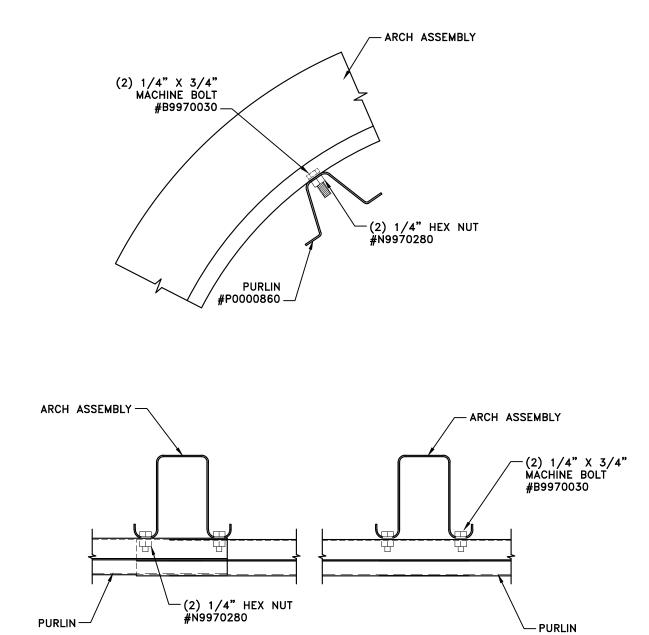
ARCH INSTALLATION


1. SLIDE THE CHORD ARCH OVER THE FORMED END OF THE 2 7/8" COLUMN AND SECURE IT WITH A 1/2" X 2 1/2" MACHINE BOLT. (TYPICAL FOR ALL ARCH COLUMN TO CONNECTIONS).

2. TIE OFF THE ARCH USING ROPES OR CABLES TO MAKE THE ATTACH PLUMB AND SQUARE. (MATERIALS FOR SECURING COLUMNS ARE NOT SUPPLIED BY CONLEY'S MANUFACTURING AND SALES.)



3. BOLT TWO OR MORE ARCHES TO THE LEGS USING (2) 1/2" X 2 1/2" MACHINE BOLT PER ARCH.


RIDGE PURLIN INSTALLATION

1. ATTACH THE RIDGE PURLIN TO THE TOP PLATE ON THE CHEVRON SPLICE USING (2) 1/4" NUTS.

ARCH AND PURLIN INSTALLATION

1. ATTACH THE PURLINS TO THE FIRST AND SECOND ARCHES WITH (2) 1/4" X 3/4" MACHINE BOLTS.

- 2. ATTACH TWO MORE ARCHES. OVERLAP THE RIDGE PURLIN AT THE THIRD ARCH AND BOLT IT TO THE THIRD AND FOURTH ARCHES WITH (2) 1/4" X 3/4" MACHINE BOLTS PER ARCH.
- 3. OVERLAP THE QUARTER POINT PURLINS AT THE THIRD ARCH AND BOLT THEM TO THE THIRD AND FOURTH ARCHES. (SEE NOTE 1 FOR BOLT INFORMATION.)

INSTALLATION REMAINING ARCHES AND PURLINS

1. INSTALL THE REMAINING ARCHES, TWO AT A TIME, AND THE PURLINS UNTIL THE FULL LENGTH OF THE BUILDING IS COMPLETE.

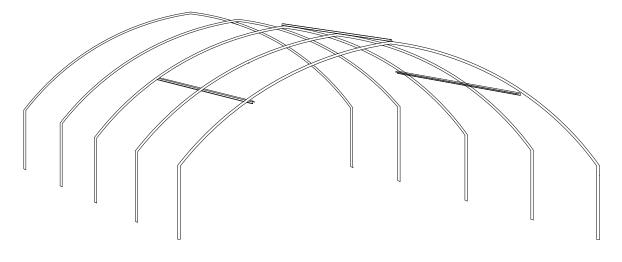


FIGURE 12 - 3 PURLIN OPTION

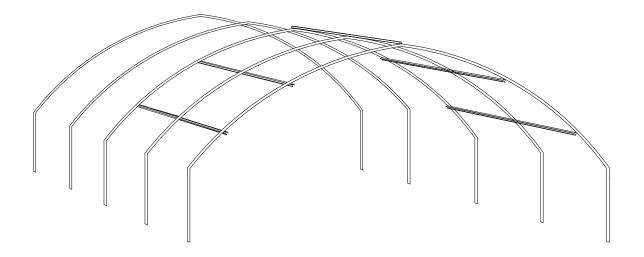
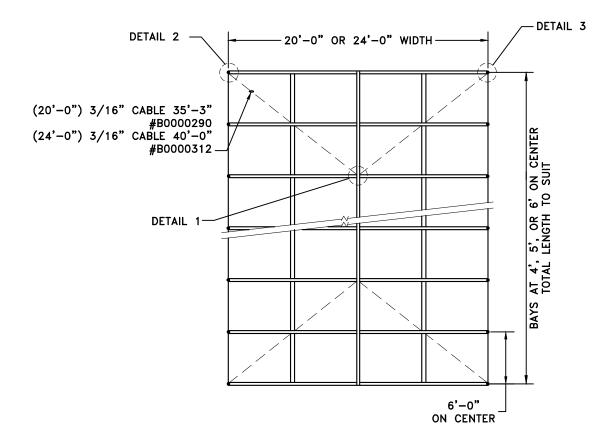
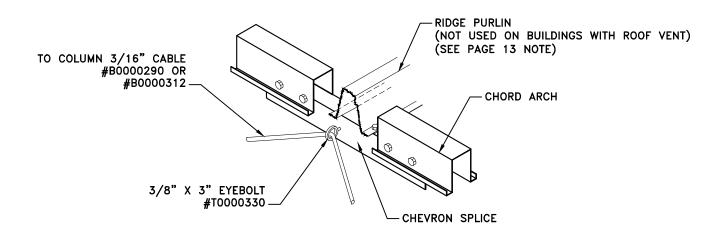
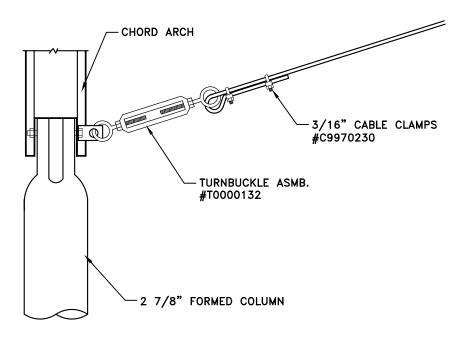
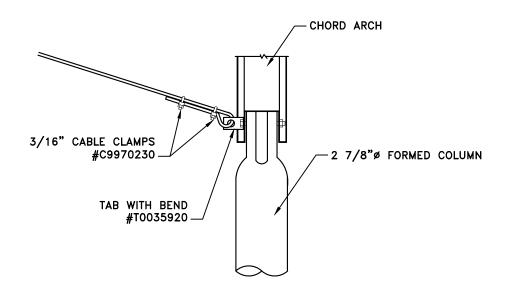
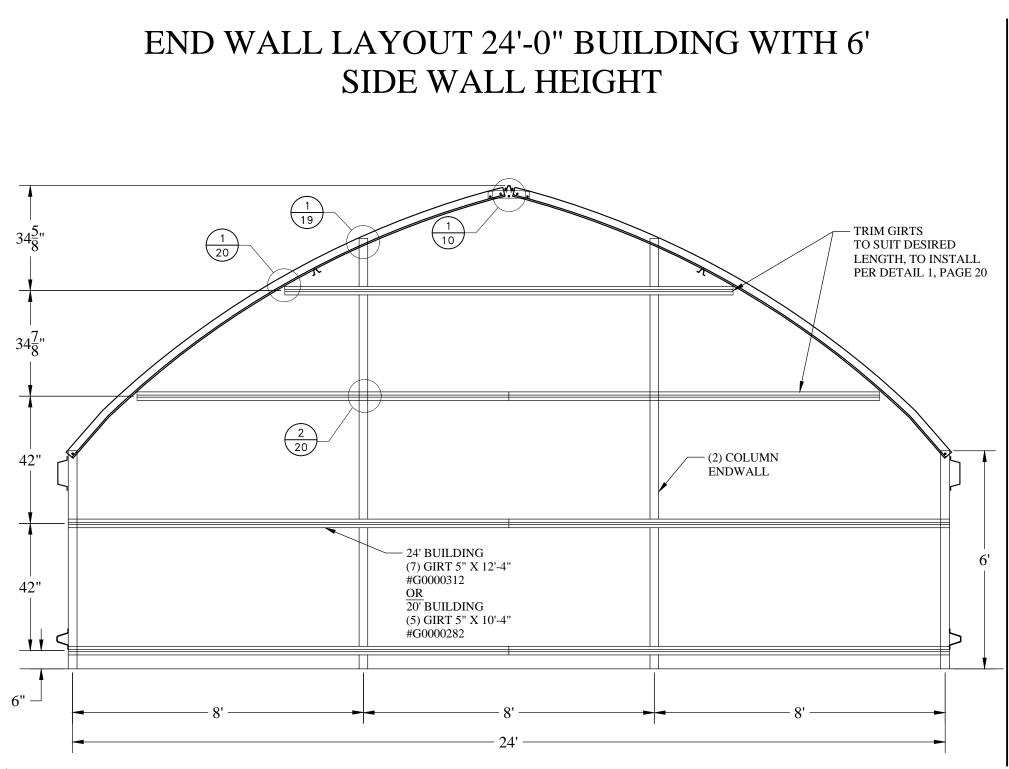




FIGURE 13 - 5 PURLIN OPTION

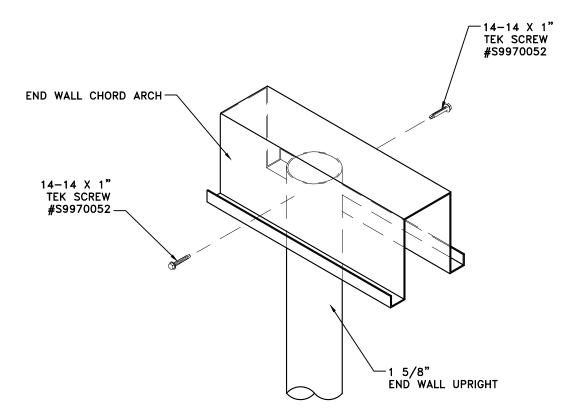
INSTALLATION OF CABLE BRACING

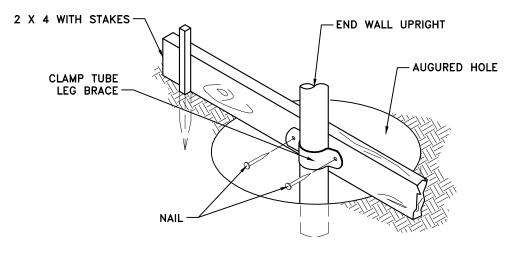

1. 12'-0" IN FROM THE END OF THE BUILDING, RAP THE MIDDLE OF THE 1/4" BRACE CABLE THROUGH EYE BOLT, AND BACK OVER THE CHEVRON SPLICE.


2. ATTACH THE 3/8" TURNBUCKLE TO ONE SIDE OF THE ARCH AT THE COLUMN TO ARCH CONNECTIONS.


3. ATTACH THE 3/16" CABLE TO THE TURNBUCKLE WITH (2) 3/16" CABLE CLAMPS.

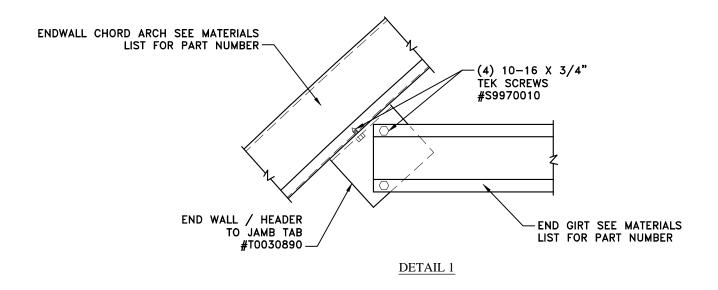
DETAIL 2


- 4. ATTACH THE BENT TAB TO THE OPPOSITION SIDE FROM THE TURNBUCKLE AT THE COLUMN TO CHORD ARCH CONNECTION.
- 5. ATTACH THE 3/16" CABLE TO THE BENT TAB WITH (2) 3/16" CABLE CLAMPS.

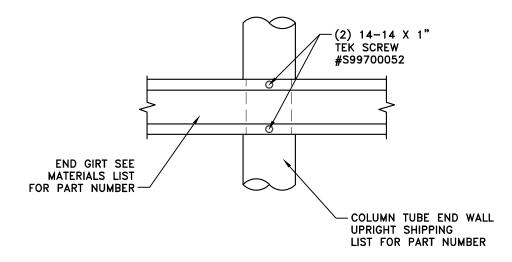


END WALL UPRIGHT INSTALLATION

- 1. PUT THE BOTTOM OF THE END WALL UPRIGHT INTO THE AUGURED FOOTING HOLE.
- 2. SLIP THE OPPOSITE END OF THE END WALL UPRIGHT INSIDE OF THE END WALL CHORD ARCH AND SECURE WITH (2) 14-14 X 1" TEK SCREW AT EACH SIDE OF THE CHORD.



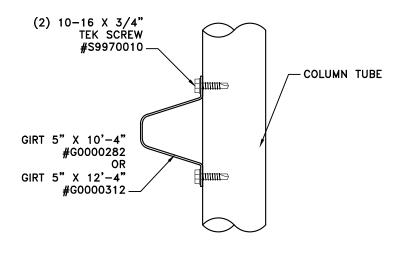
3. BEFORE POURING THE CEMENT, SLIP (1) CLAMP TUBE LEG BRACE ON EACH END WALL COLUMN TUBE. STAKE 2 X 4'S IN PLACE KEEPING THE COLUMNS PLUMB IN BOTH DIRECTIONS AND TEMPORARILY NAIL THE CLAMP TUBE LEG BRACES TO THE 2 X 4'S (SEE DETAIL 2 BELOW). THIS IS DONE TO HELP SUPPORT THE WEIGHT OF THE BUILDING WHILE THE CEMENT IS CURING. WAIT A MINIMUM OF 24 HOURS BEFORE REMOVING 2 X 4'S. USE THE OFFSETTING LINES TO PROPERLY ALIGN THE COLUMN INTO THE AUGUR HOLE (SEE PAGE 6).



END WALL GIRT CONNECTIONS

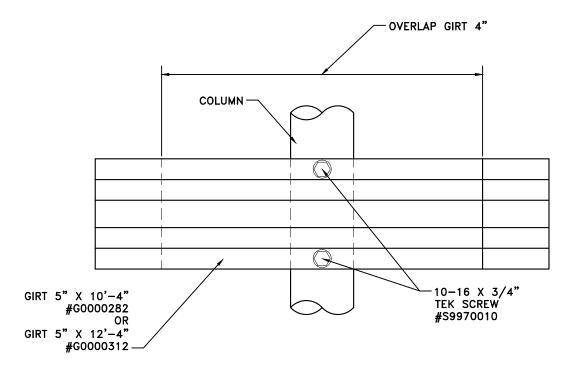
- 1. DRILL SCREW THE END WALL / HEADER TO JAMB TAB TO THE END WALL ARCH, THE END WALL AND THE UPRIGHTS WITH (2) 10-16 X 3/4" TEK SCREWS.
- 2. LEVEL AND DRILL SCREW THE END GIRTS TO THE TABS WITH (2) 10-16 X 3/4" TEK SCREWS.

- 3. LEVEL AND DRILL SCREW THE END GIRT TO THE TABS WITH (2) 10-16 X 3/4" TEK SCREWS AT EACH TAB.
- 4. SECURE THE END GIRTS TO THE END WALL UPRIGHTS WITH (2) 10-16 X 3/4" TEK SCREWS. (SEE DETAIL 2 BELOW).
- 5. END WALL GIRTS ARE TYPICALLY SPACED OUT EVENLY, TO SUPPORT THE END WALL COVERING. GIRTS CAN BE SPACED OUT AS FAR AS 48" IF NEEDED.


DETAIL 2

END WALL UPRIGHT INSTALLATION

1. MARK THE COLUMNS WITH THE GIRT LOCATIONS.

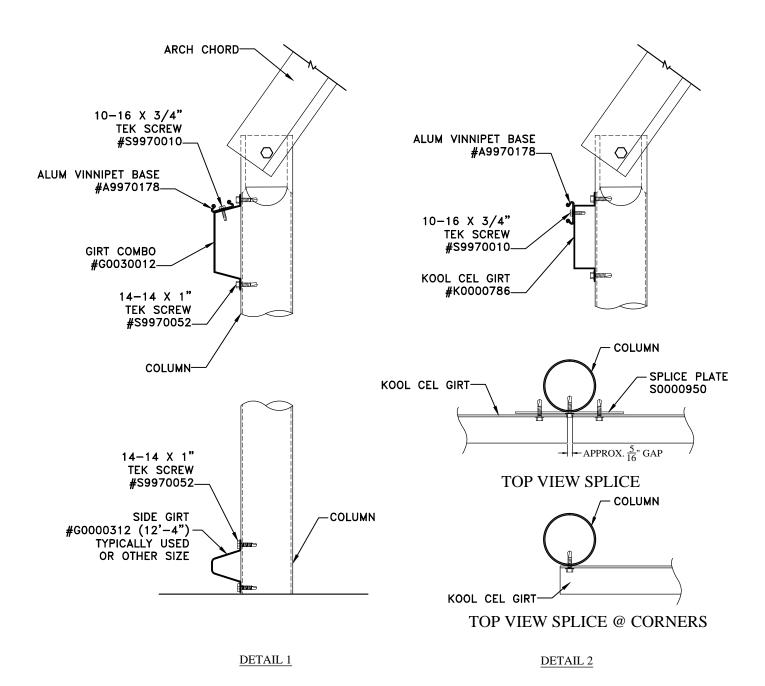

2. CLAMP THE GIRTS TO THE COLUMN AND ADJUST TO MAKE THEM LEVEL.

3. SECURE THE GIRTS TO THE COLUMNS WITH (2) 10-16 X 3/4" TEK SCREWS PER COLUMN.

DETAIL 1

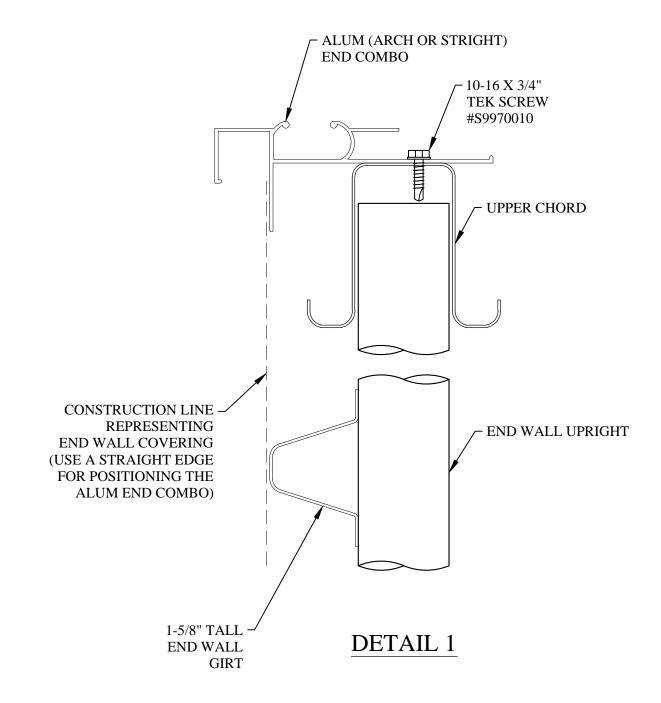
4. SPICE THE GIRTS BY OVERLAPPING THEM AND SECURING BOTH GIRTS TO THE COLUMN WITH (2) 10-16 X 3/4" TEK SCREW PER COLUMN.

COVERING TRIM INSTALLATION SIDE WALL / ROOF CONNECTION


1. GIRT COMBO PROVIDED [DETAIL 1] (PART#: G0030012)

ATTACH THE GIRT COMBO TO EACH COLUMN WITH (2) #14 TEK SCREWS, NEAR THE TOP OF THE COLUMNS. AT SPICE, OVERLAP BY GIRT BY 4". ATTACH THE ALUM VINNIPET BASE TO THE TOP OF THE GIRT COMBO WITH A 10-16 X 3/4" TEK SCREW AT 12" ON CENTER.

2. KOOL CEL GIRT PROVIDED [DETAIL 2] (PART#: K0000786)


ATTACH THE KOOL CEL SPLICE PLATE (S0000950) TO EACH COLUMN, NEAR THE TOP OF THE COLUMNS WITH (2) #14 TEK SCREWS. ATTACH THE KOOL CEL GIRT TO THE KOOL CEL SPLICE PLATES WITH (2) #14 TEK SCREWS, APPROXIMATELY AS SHOWN IN DETAIL 2 BELOW. ATTACH THE ALUM VINNIPET BASE TO THE UPPER PORTION OF THE GIRT WITH A 10-16 X 3/4" TEK SCREW AT 12" ON CENTER.

3. ATTACH THE 5" GIRT WITH (2) 14-14 X 1" TEK SCREWS AT EACH COLUMN.

COVERING TRIM INSTALLATION END BAR COMBO (CORRUGATED)

1. FOR FIBERGLASS END WALL COVERING, USE AN ALUMINUM ARCH END COMBO. ATTACH IT TO THE END WALL ARCH WITH 10-16 X 3/4" TEK SCREWS AT 16" ON CENTER.

INSTALLATION OF POLY COVERING ON ARCHED BUILDINGS

- 1. ON SINGLE BUILDINGS, ROLL OUT THE POLY LENGTHWISE NEXT TO BUILDING.
- 2. WAD UP THE POLY (APPROX. EVERY 20') AND TIE IT WITH ROPES ON THE SIDE OF THE POLY FURTHEST FROM THE BUILDING.
- 3. THROW ROPES OVER THE BUILDING AND PULL THE POLY ONTO THE BUILDING. REPEAT THIS PROCEDURE FOR MULTIPLE LAYERS OF POLY.
- 4. INSTALLING POLY REQUIRES A MINIMUM OF FOUR PEOPLE, TWO PEOPLE TO HOLD THE POLY IN PLACE AT THE END OF THE BUILDING, ONE ON EACH SIDE. THE OTHER TWO PEOPLE STARTING AT THE OPPOSITE END OF BUILDING TO INSTALL THE TUBE LOCK CAP SIMULTANEOUSLY, ON EACH SIDE OF BUILDING. SEE PAGE 30 FOR POLY LOCKING INSTRUCTIONS.
- 5. SECURE THE TUBE LOCK CAP WITH TEK SCREWS AT EACH END.

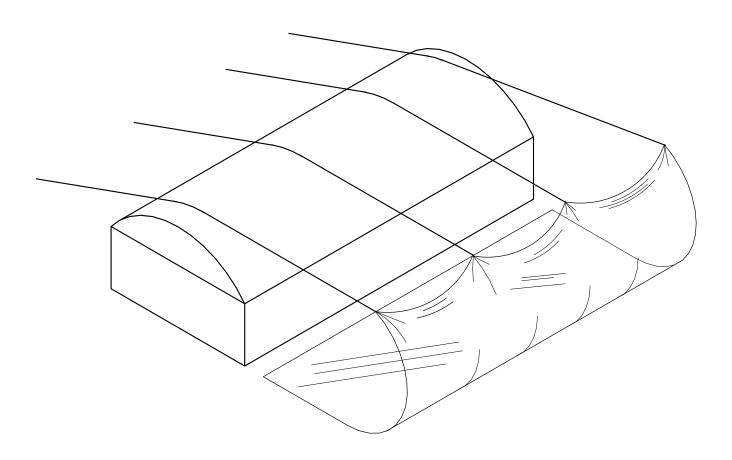
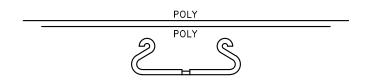
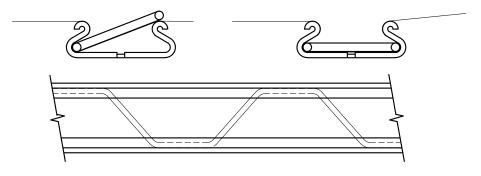
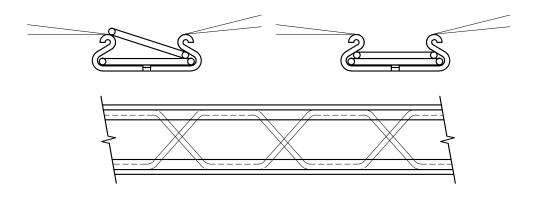



FIGURE 14 - POLY INSTALLATION

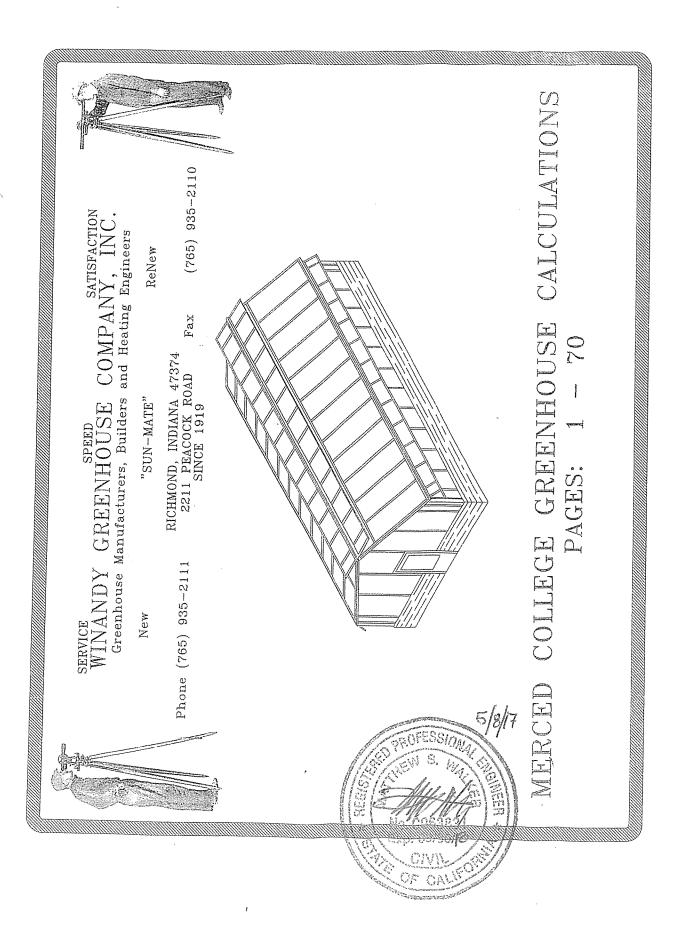

INSTALLATION OF POLY COVERING WITH VINNIPET SPRING

NOTE: TEK SCREW ALL VINNIPET BASE AT A MINIMUM OF 12" ON CENTER

1. APPLY POLY FILM (ONE OR MORE LAYERS) OVER PREVIOUSLY INSTALLED VINNIPET BASE.



2. INSERT ONE EDGE OF THE VINNIPET SPRING INTO THE VINNIPET BASE. KEEPING POLY TIGHT WEAVE THE VINNIPET SPRING INTO THE BASE SECURING THE POLY.



USE DOUBLE CLIPS WHEN INSTALLING 32' OR WIDER POLY, DOUBLE POLY, AND/OR BUILDING IS LOCATED IN HIGH WIND AREA.

3. INSERT ONE EDGE OF THE SECOND VINNIPET SPRING INTO THE VINNIPET BASE. KEEPING POLY TIGHT WEAVE THE SECOND VINNIPET SPRING INTO THE BASE SECURING THE POLY.

WARRANTY CONLEY'S MFG. AND SALES, THEIR EMPLOYEES OR REPRESENTATIVES, WILL NOT BE RESPONSIBLE FOR ANY DAMAGE TO GREENHOUSE COVERING, STRUCTURES, CROPS OR EQUIPMENT WHEN USED IN CONJUNCTION WITH OUR TUBE - LOCK, OR ANY OTHER LOCKING DEVICE MFG,D BY C.M.S. OR OTHERS.

MERCED College Greenhouse

Table of Contents

Page(s)

3

- 1 Design Summary
- 2-20 Structural Drawings
- 21 25 Design Load Criteria and Calculations
- 26-63 Load Analysis Calculations
- 64-70 Member Design Analysis

Merced College Merced, CA.

Greenhouse has been designed in accordance with the specifications. CBC/UBC/IBC Code Base 15 PSF Live Load 6 PSF Dead Load Seismic Category D 85MPH Exp. C Wind Load

1] All aluminum extrusions are from 6061-T6 alloy or equivalent. Fy = 35ksi.

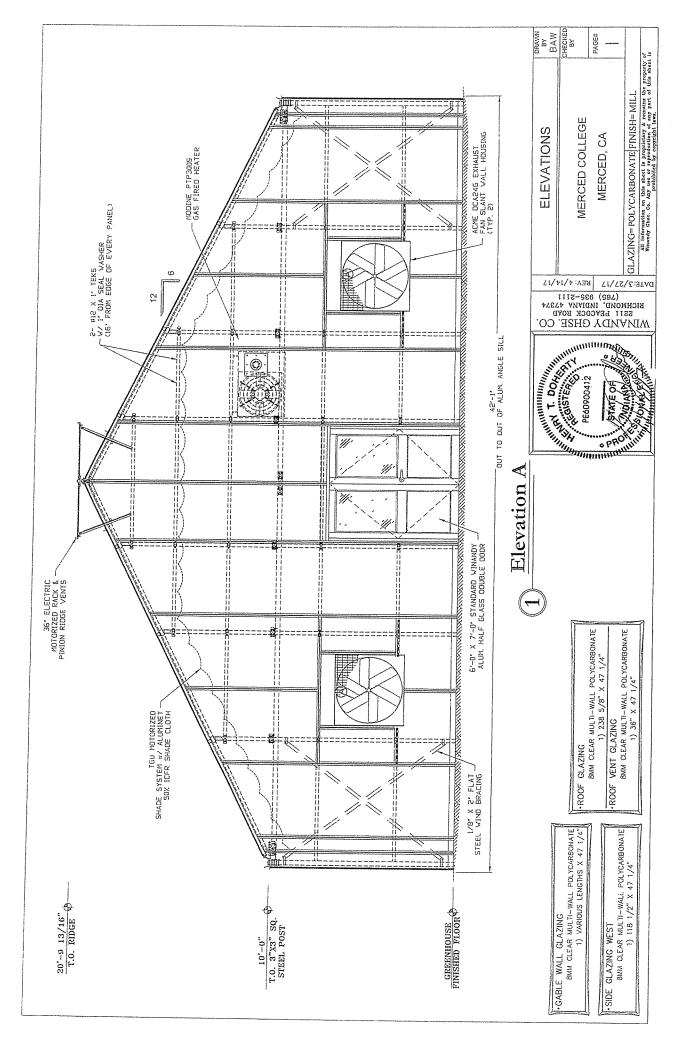
2] All Steel Tube is Hot Dipped Galvanized Coated

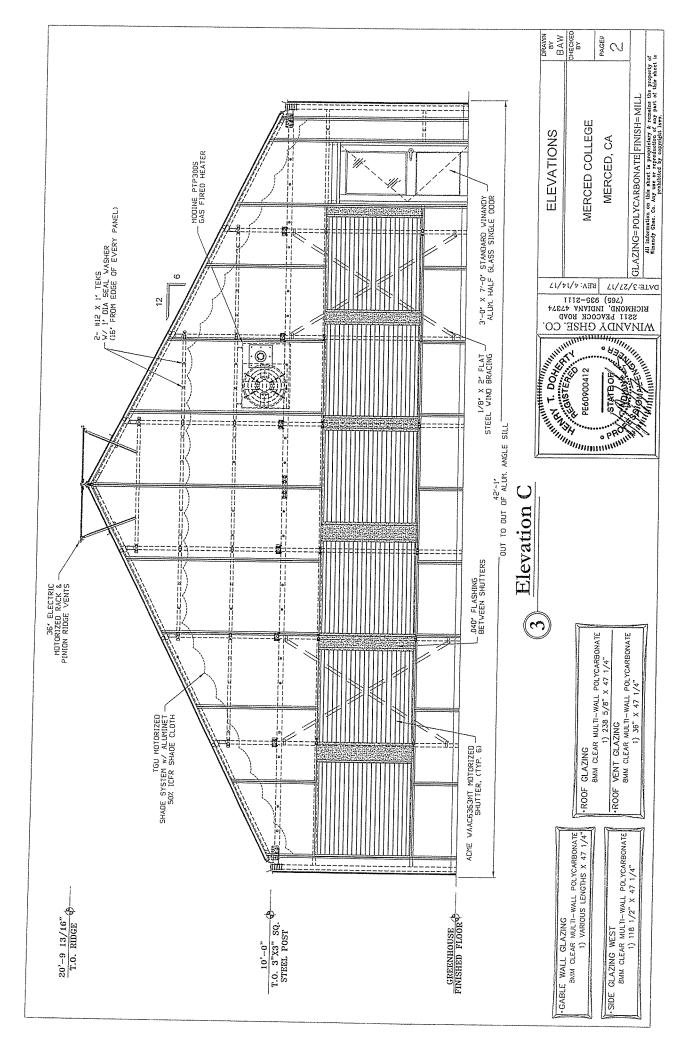
3] All Steel and Fittings are Hot Dipped Galvanized

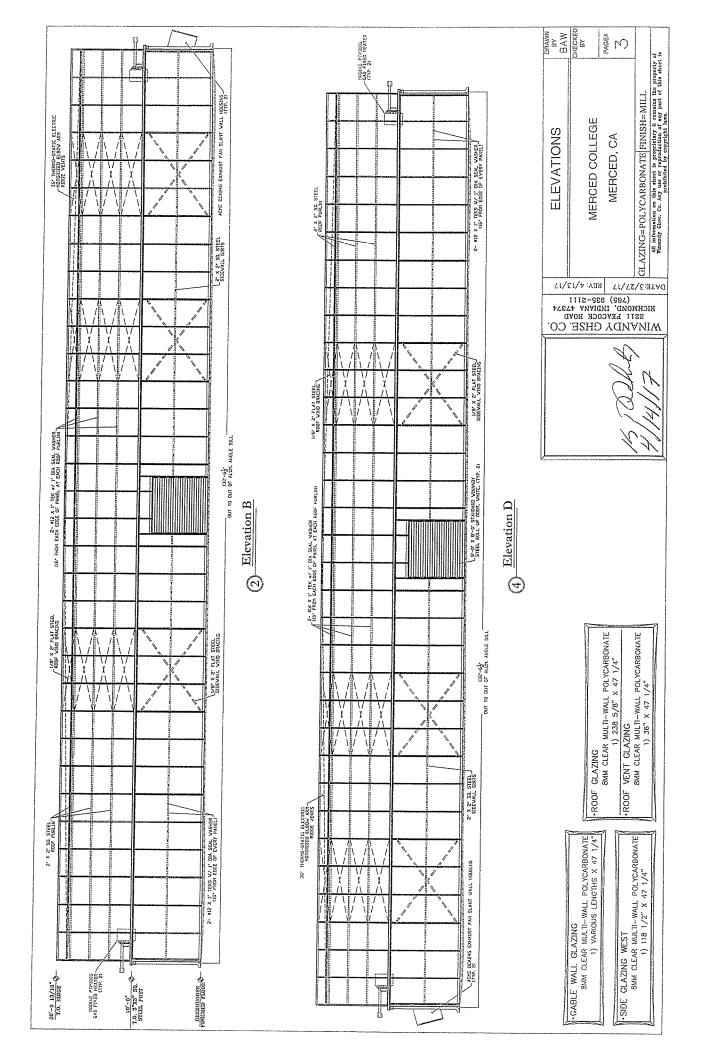
4] All Steel Tubing is manufactured from 50 KSI min yield point steel, 55 KSI min yield point steel

5] All bolts are Hot Dipped Galvanized for corrosion resistance.

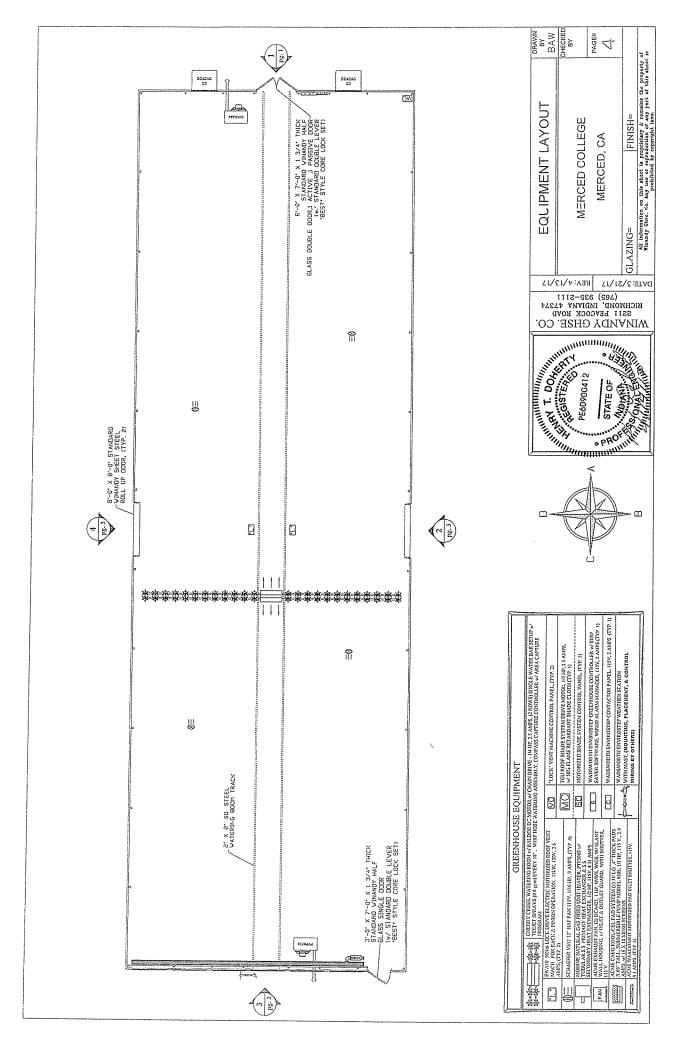
- 6] All bolts are Grade 5 equal to A-325 in strength rating.
- 7] All connections have been examined and judged to have sufficient fasteners.
- 8] Greenhouse has been designed in accordance with the specifications.
- 9] Greenhouse is to be installed onto foundation designed and installed by others. No floor load is imparted to the greenhouse structure.
- 10] The wind load is greater than the seismic load.

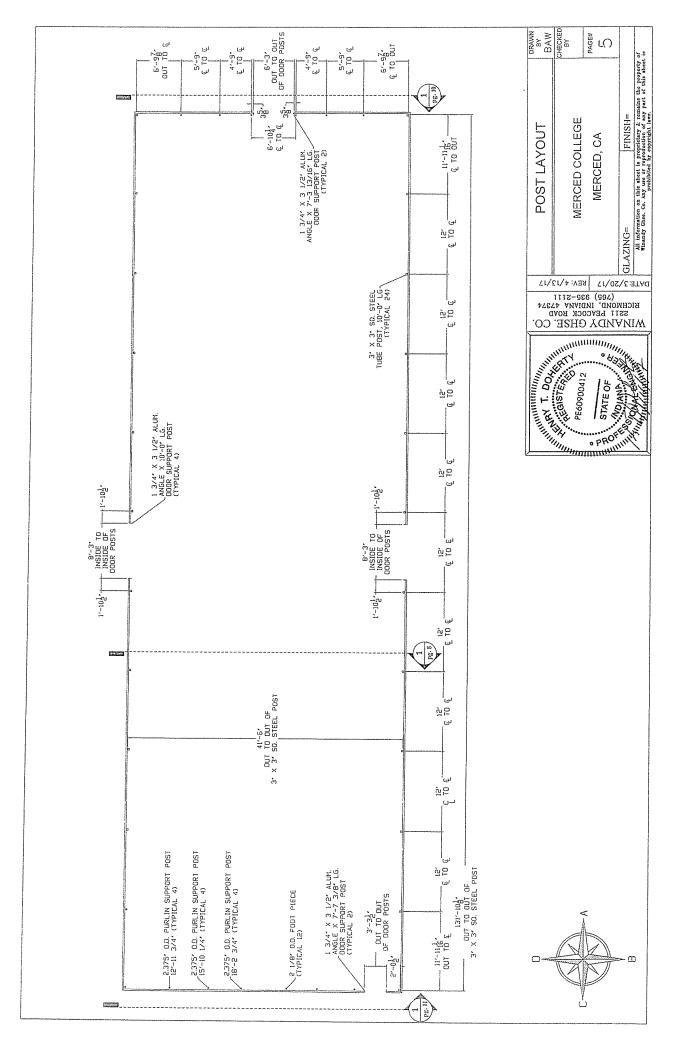

靀

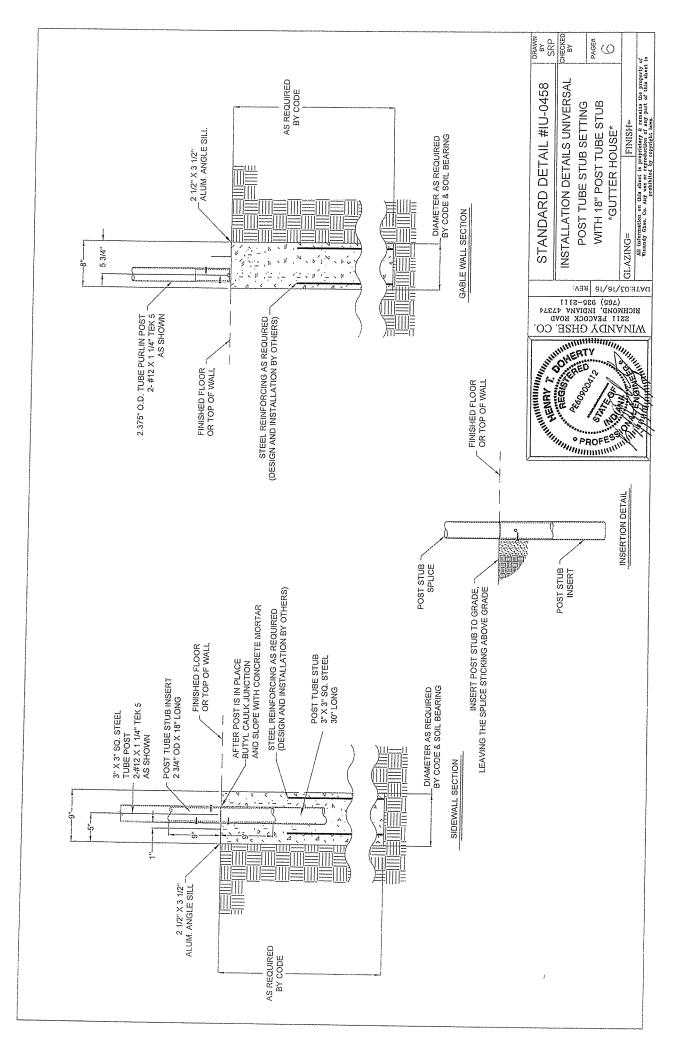

11] This greenhouse has a sloped slippery roof covered structure.

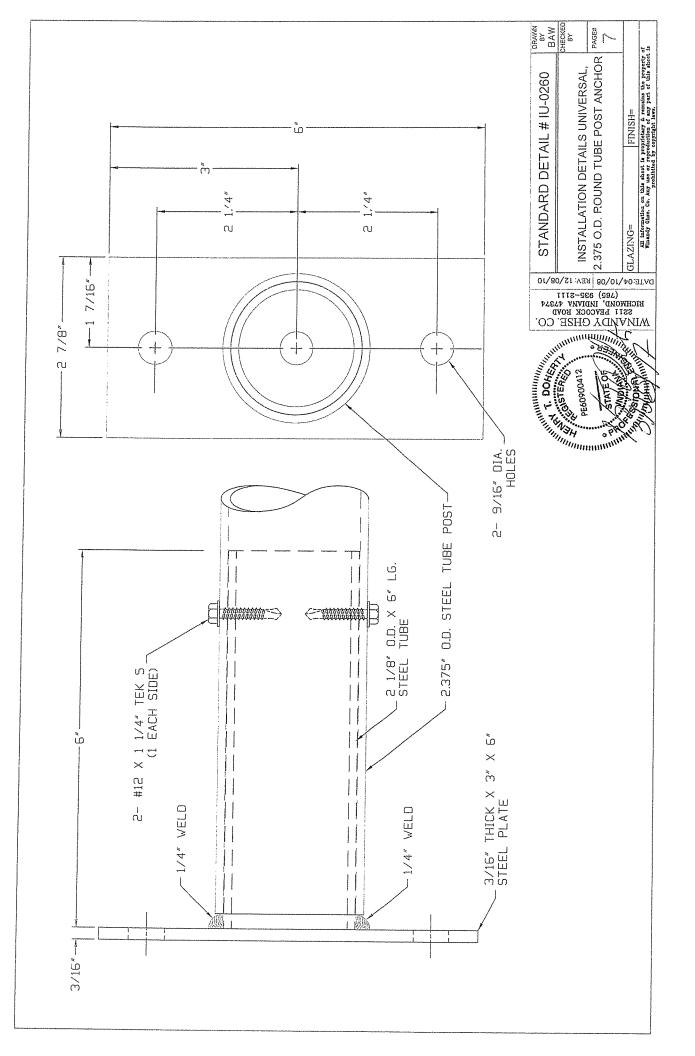

12] All extrusions and fittings are designed to inter-lock as much as possible to minimize fasteners and have been specially designed for structural as well as specific greenhouse functions.

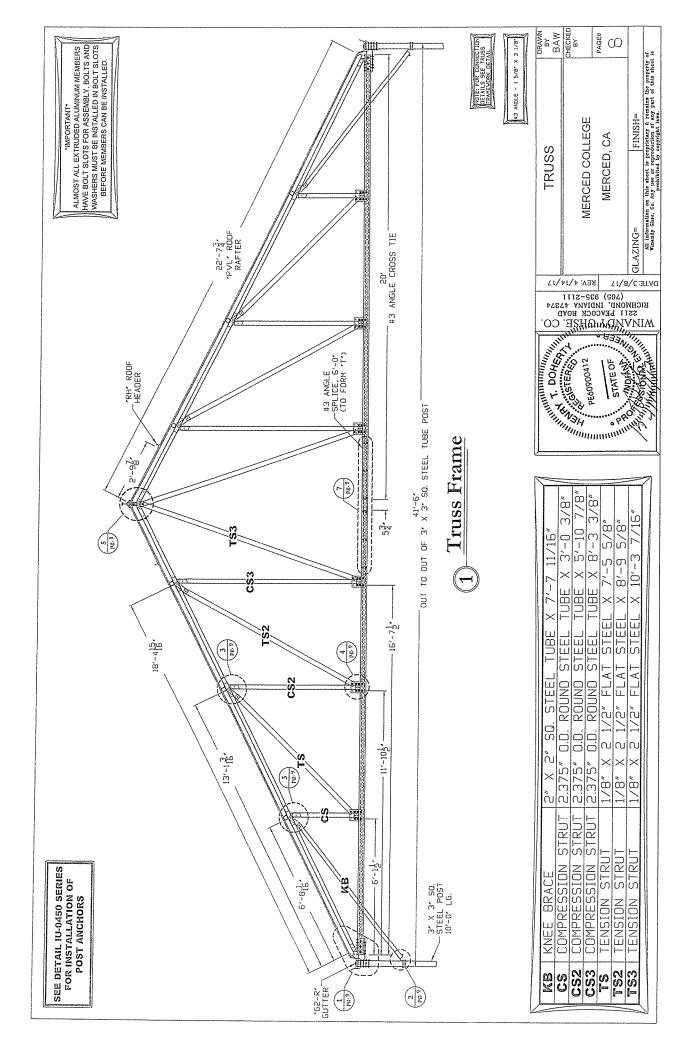
13] All greenhouse members have been checked for ability to withstand prescribed loads.

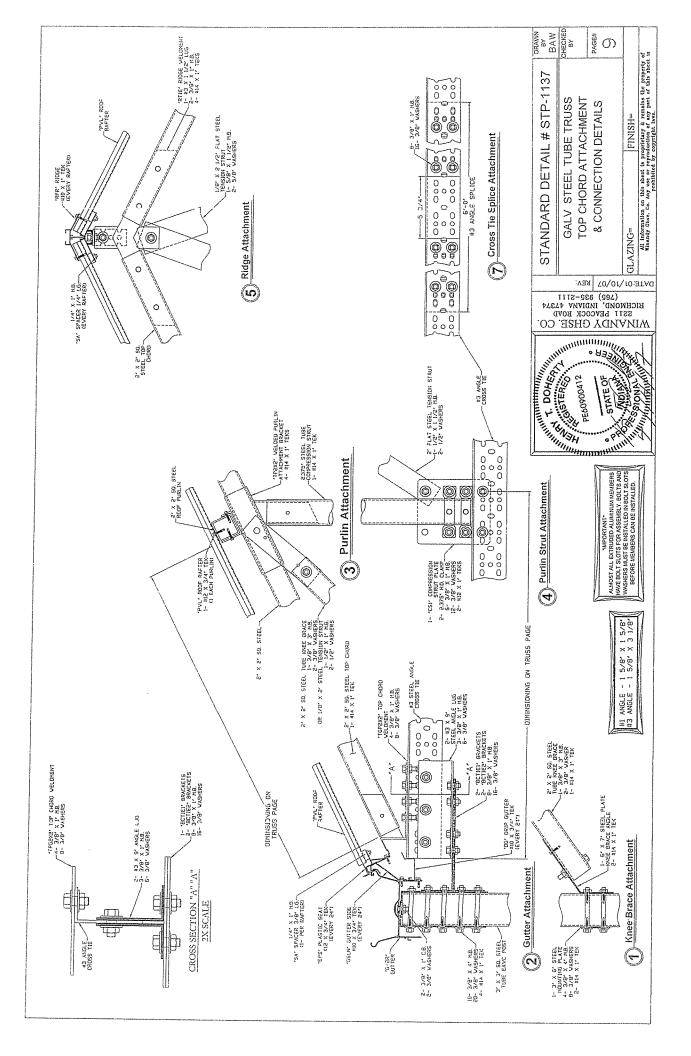

14] The main greenhouse is included in this design only No foundation designs have been included

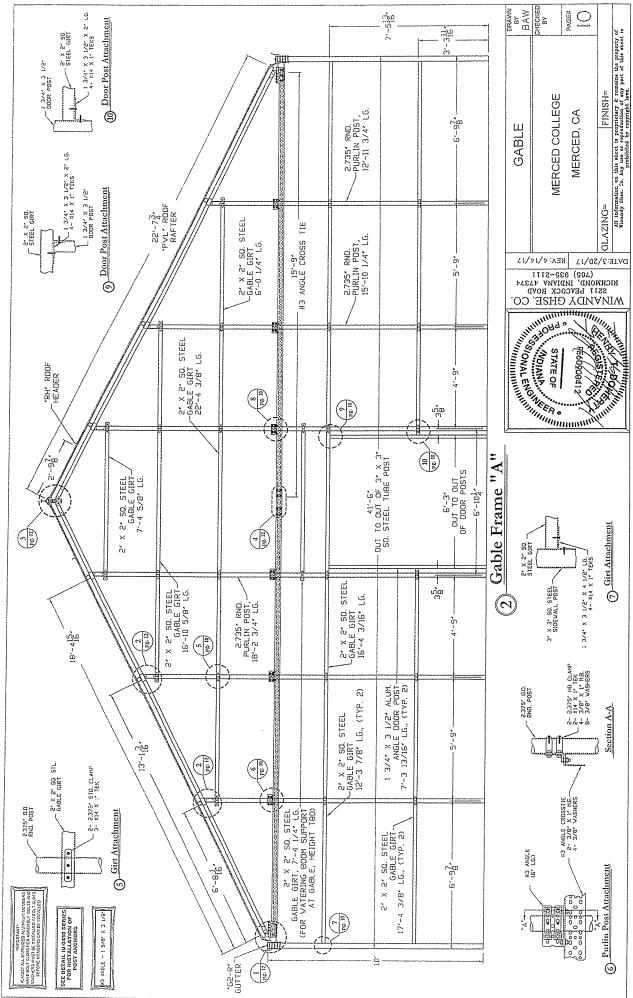


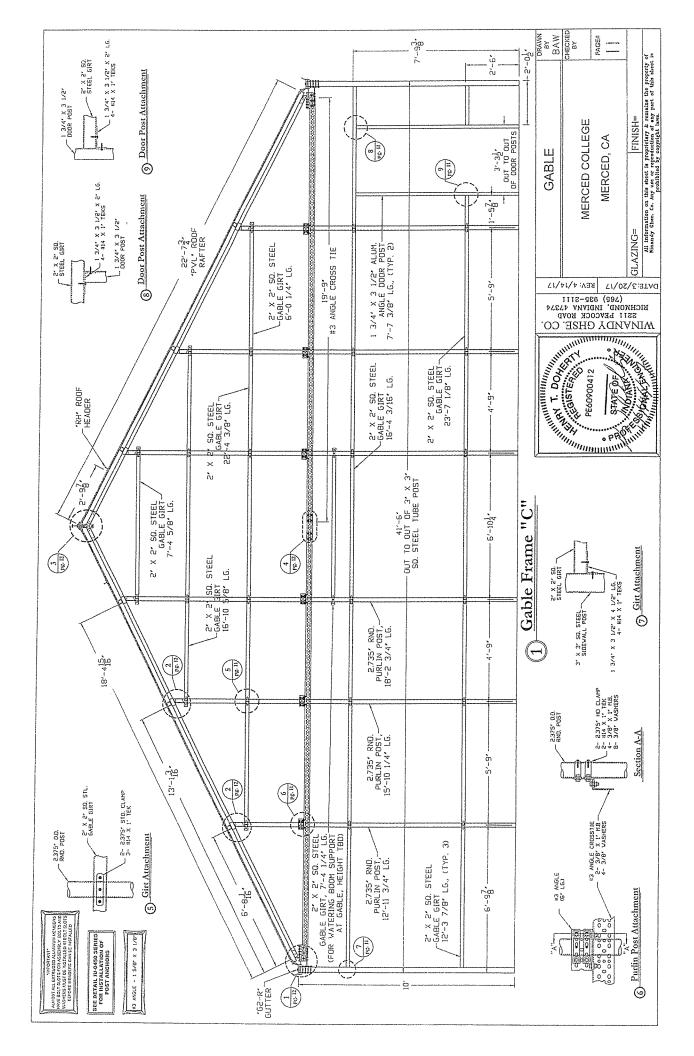


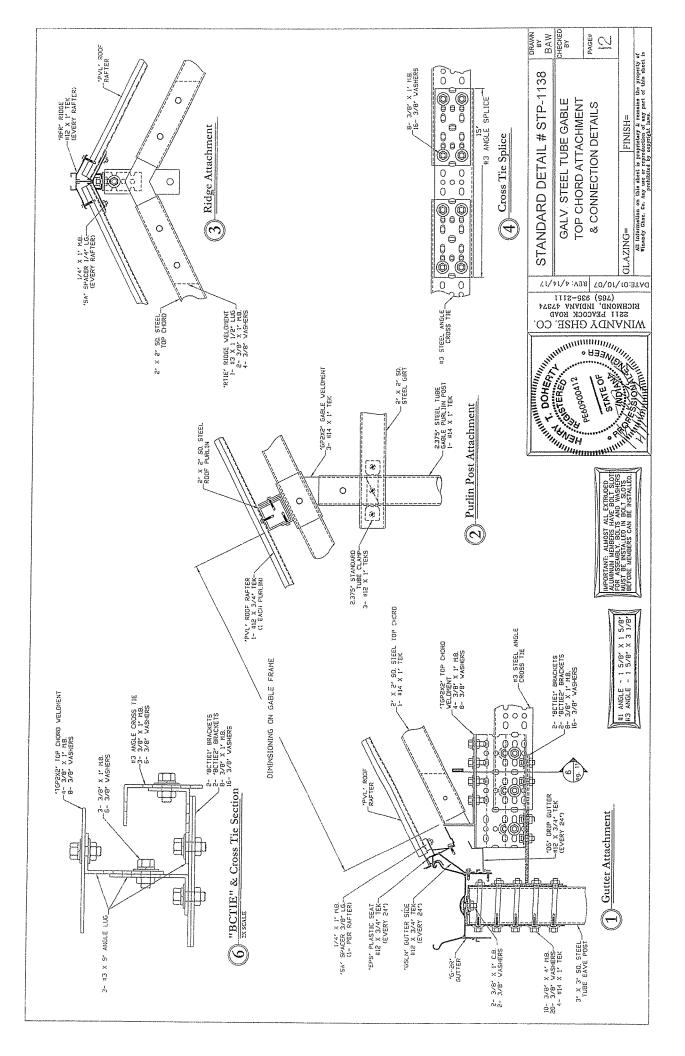


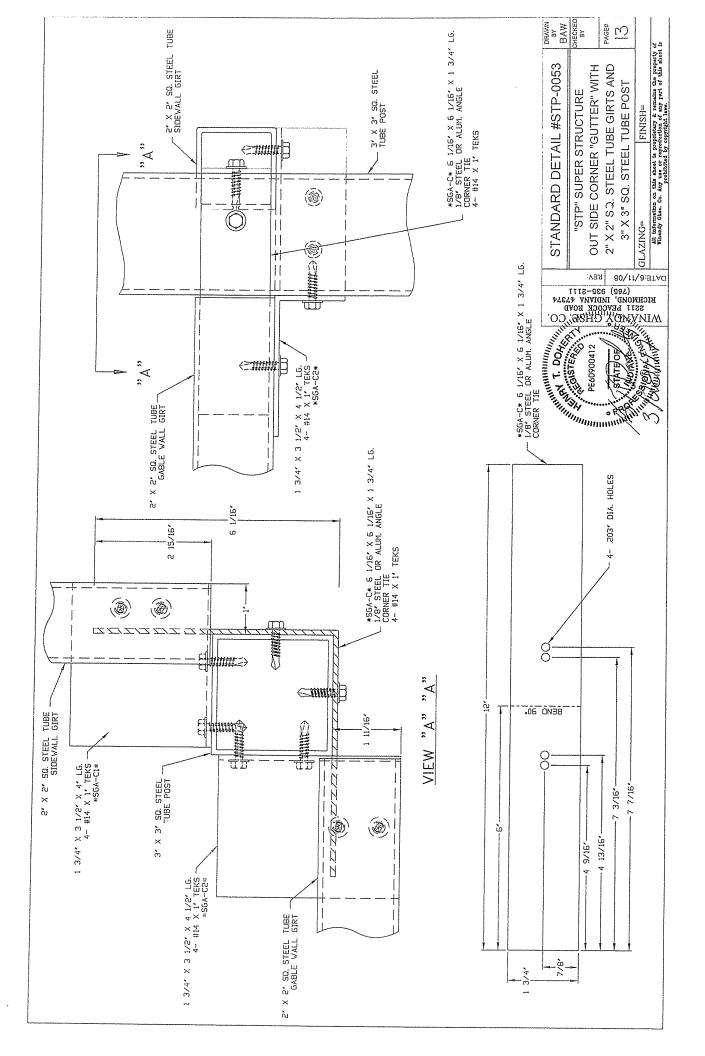

Ť

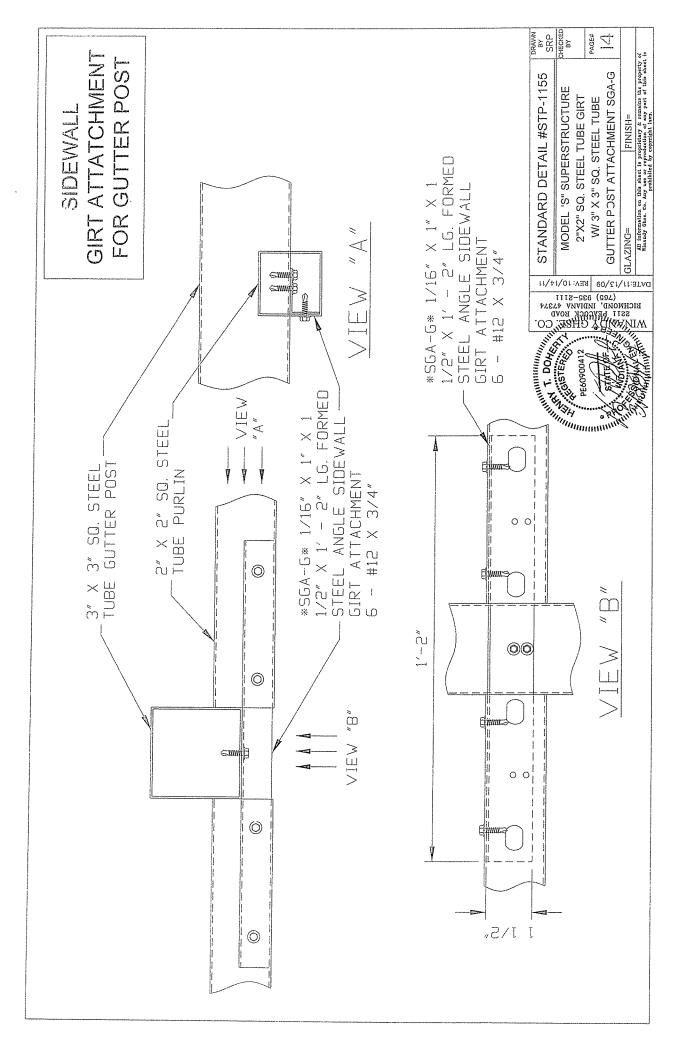


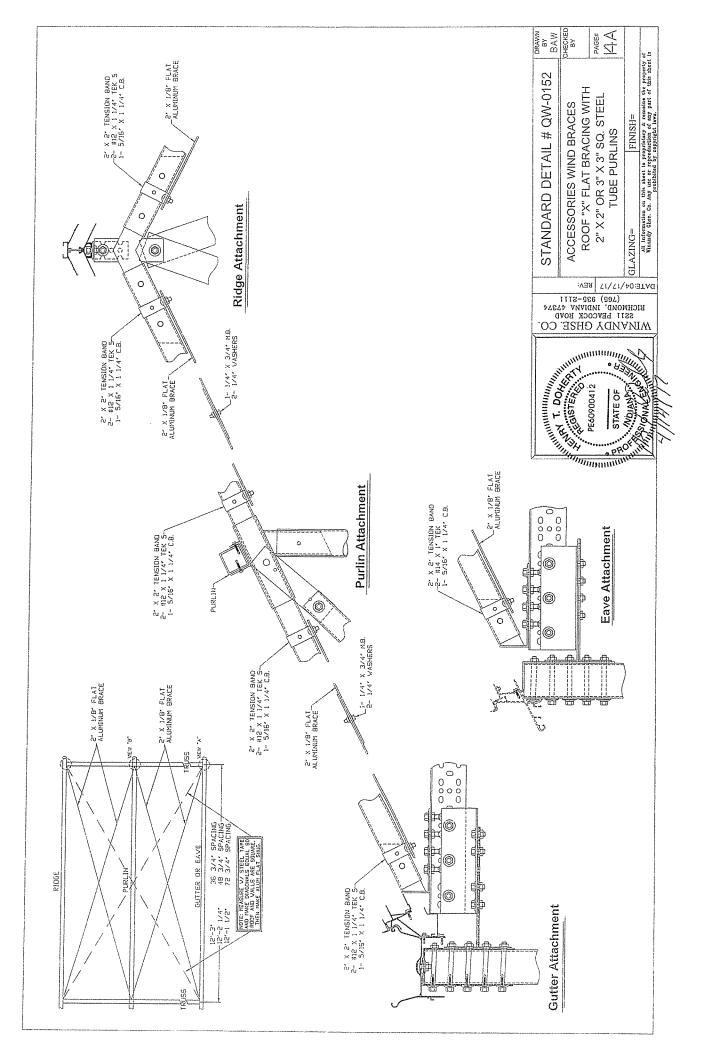


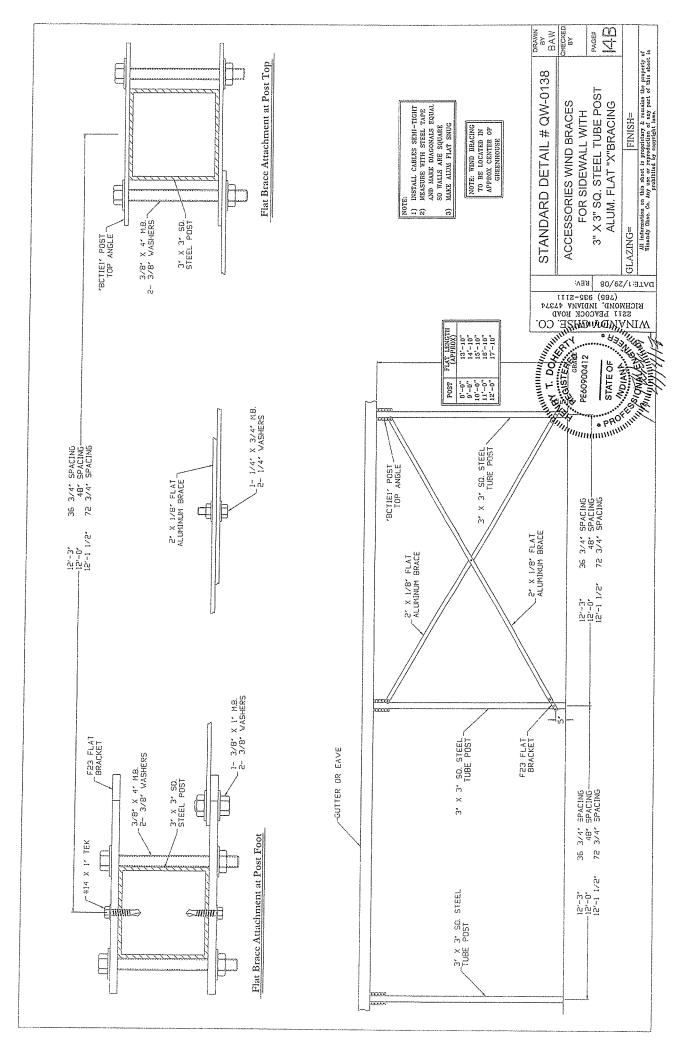


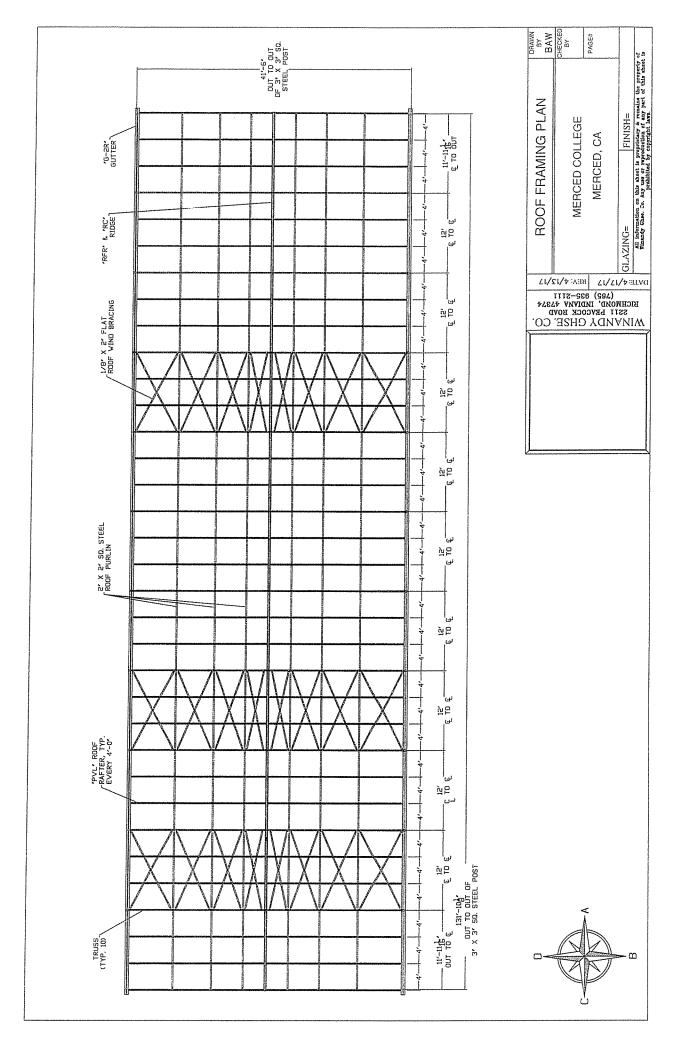


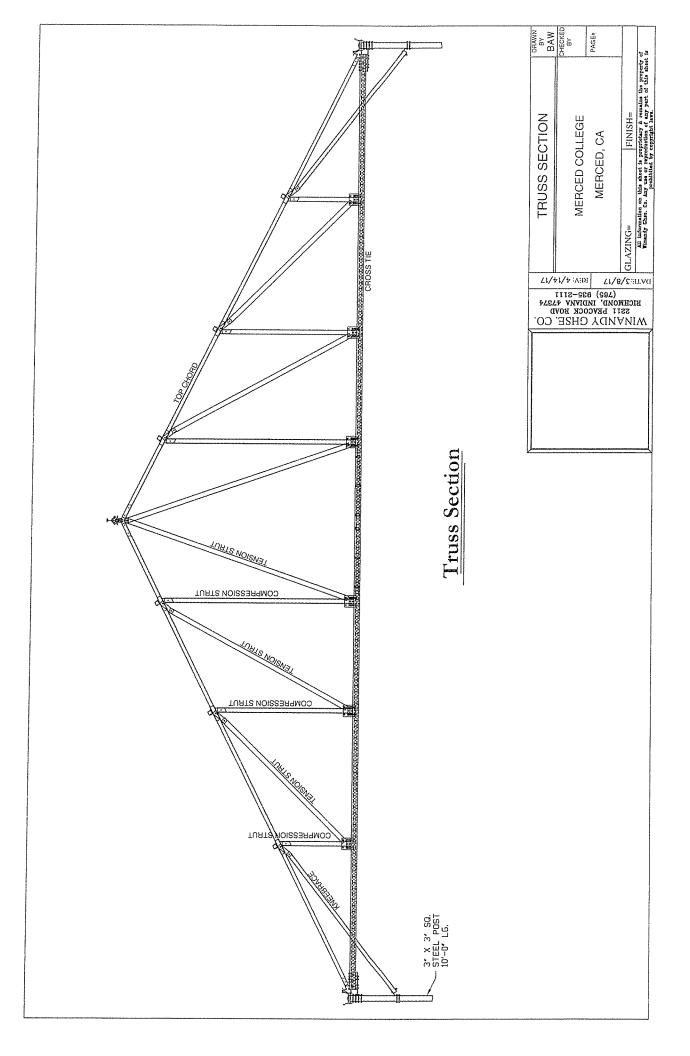


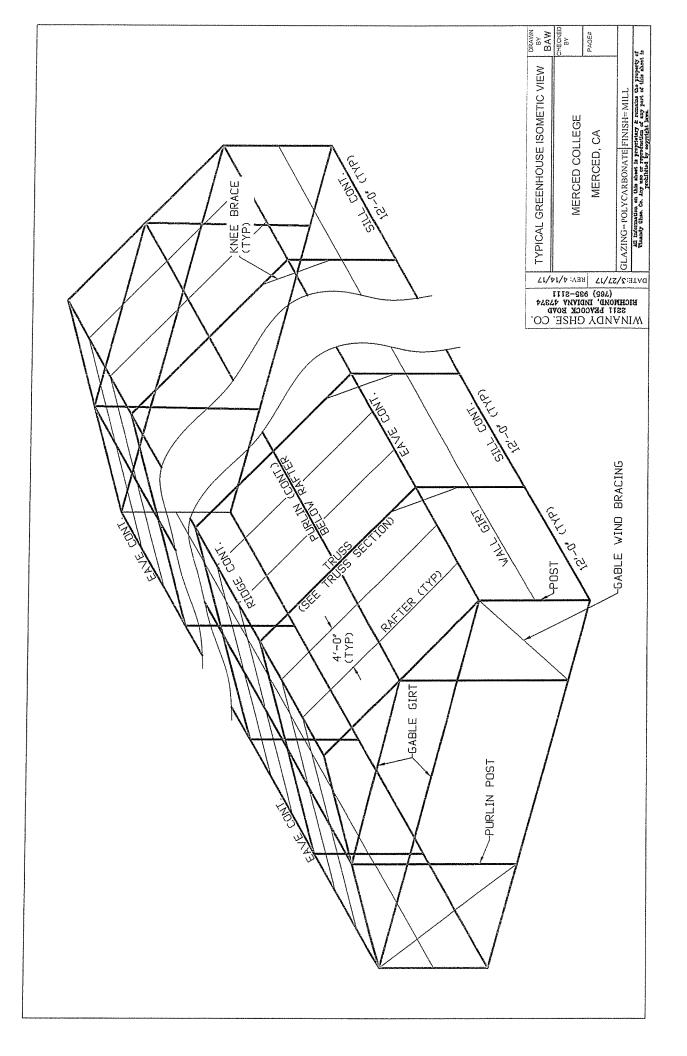









•



\$

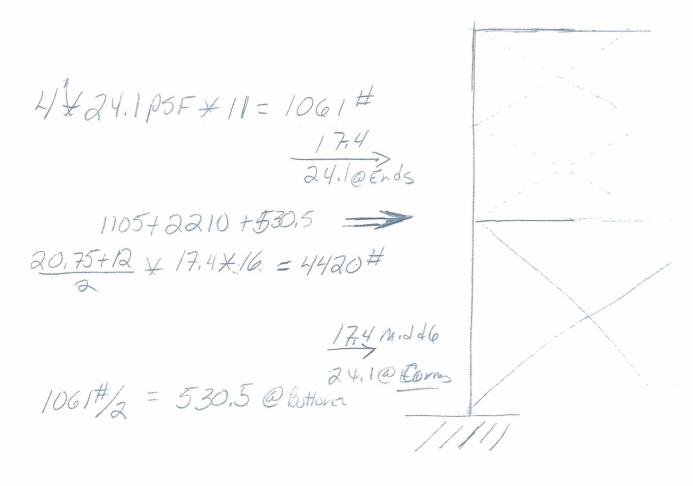
.

Mercel DL= - Fill Bay-

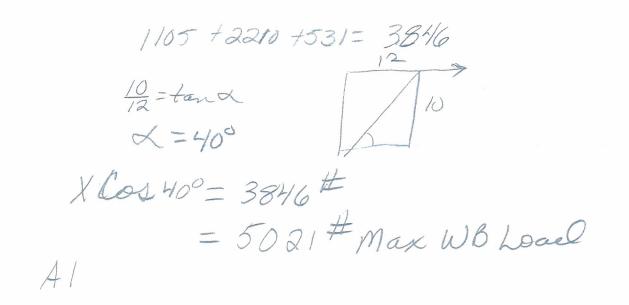
3/3///7

3' ¥ 12×6 = 216# - @5,5 Node 6' ¥ 12×6 = 432 @13,14,16,17 6-

Elomait ... Note 1/2 (20.75-11.875) × 12× 4= 319.5# 22,23 Panello. g


LL LL= 15P5F 3' + 12 + 15 = 540 + L 6 × 12×15 = 1030# - @Note5,6 6 ¥ 12 ¥ 13 = 1030" @ Node 13,14,16,17 [1/2(20,75 +11.875)12 × 15 = 799 @ Node 15 1/2 (20,75-11,875) × 12 × 15 = 799 # 23

3/31/17 Mercul WL WL 90 MPH 105 exp B-7.7PSF 1.7 PSF 17,4 PSF Sidewall 1741 × 12 × 3 = 626 # @ Nod 3 17:4 + 4 + 12 = 836 # @ 1/2 Elem 1 1.5 +12 + 17.4= 3141 # @Note 1+5


Roof Hoviz 3 × 12 × 14 = 144 # Now 13,14 + Elemi4@6'2" 1.5 × 12 × 4 = 72 # Note 5,15

Roof Vipt 3×12×7.7 = 278 # Note 5,15 6×12×7.7 = 555 # Note 13, Mehm 14.062" 3×12×11.7 = 429# ~ Note 15,6 = 6×12×11.7 = 857 # Node 16,17 Elem 15062"

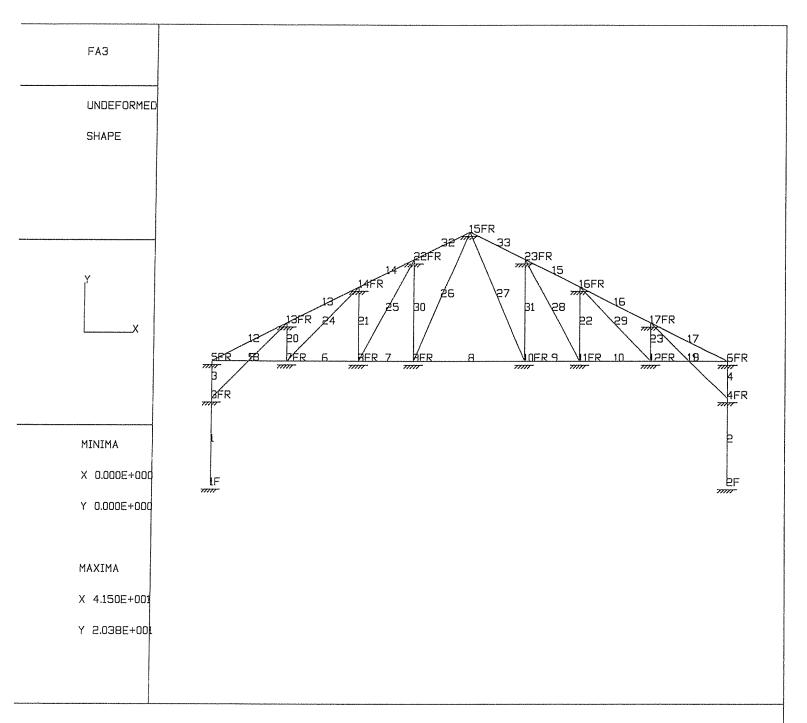
Merced

4420/2 = 2210@ Post Base

Earthquakehoad Merced

Siesnie Shear

Note: No Floor Loads Ingparted to the Greenhouse structure & Floor is Slab Engrade.


 $F = \frac{1.2505}{R} \neq (W_{x})$ Stesmic Use Group 1

 $5_{DS} = \frac{2}{3} 5_{MS}$ $5_{MS} = F_{a} 5_{S}$ $5_{S} = 1507_{0} = 1.5$ $F_{a} = 1$ $F = \frac{1.2(\frac{2}{3} \times 1 \times 1.5)}{2.5} (5_{PS}F)$

F = 2.5 PSF Load

Smaller than Wh - therefore Windlood rules.

2.5 × 12 × 20.5 × = 312 #

NOTES :

JOB ID: MERCED RUN ID: MERCED

PROGRAM : Ge WINANDY GREJ JOB : MERCEI RUN : MERCEI	eneral F: ENHOUSE (D D	rame Analysis CO.	v2.05		TIME :	Thu Ap	r 13 16: J	PAGE NO. 1 00:59 2017 OB NO. : 1
NODE NO	NODAL (X	N O D A L COORDINATES Y	I N F CODE	O R M A S PX STI	T I O UPPORT FF	N CONDITI PY STIFF	ONS M S'	TIFF
Units		Ft		Lb/In		Lb/In		n /Deg
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 22 23	0.000 41.500 0.000 41.500 6.125 11.875 16.312 25.188 29.625 35.375 6.125 11.875 20.750 29.625 35.375 125 11.875 20.750 29.625 35.375 16.313 25.188	0.000 0.000 7.000 7.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 13.063 15.938 20.375 15.938 13.063 18.156 18.156	F FRRFR FR FR FR FR FR FR FR FR FR FR FR					
ELEM N NO NO	E DE N	LEMENT PE ELE ODE LENG	M TH	FORMA BETA ANGLE	T I O PROP TYPE	ELEM TYPE	NE HINGE	PE HINGE
1 2 3 4 5 6 7 8 9 10 11 12	1 2 3 4 5 7 8 9 10 11 12 5	4 7. 5 3. 6 3. 7 6. 8 5. 9 4. 10 8. 11 4. 12 5. 6 6.		Deg 90.00 90.00 90.00 90.00 0.00 0.00 0.00	1 1 1 2 2 2 2 2 2 2 4	BEAM BEAM BEAM STRUT STRUT STRUT STRUT STRUT STRUT STRUT BEAM	Y Y Y Y Y Y Y Y	Y Y Y Y Y Y Y Y Y

6 B

PROGRA WINAND JOB : RUN :	M : Genera Y GREENHOU MERCED MERCED	I Frame Ana SE CO.	lysis v2.05	5	TIME :	Thu Apr	13 16:	PAGE NO. 2 01:04 2017 JOB NO. : 1
ELEM NO	NE NODE	ELEMI PE NODE	ENTIN ELEM LENGTH	IFORM BETA ANGLE	A T I O PROP TYPE	N ELEM TYPE	NE HINGE	PE HINGE
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33	23 16 17 3 17 7 8 11 12 7 8 9 10 11 12 22 23 22 23 22 23	16 17 6 13 4 13 14 16 17 14 22 15 15 23 16 9 10 15 15 15	4.960 6.429 6.848 8.618 3.063 5.938 3.063 8.266 9.285 11.284 11.284 9.285 8.266 8.156	-26.56 -26.57 -26.57 44.71 -44.71 90.00 90.00 90.00 90.00 45.92 61.45 66.84 113.16 118.55 134.08 -90.01 -90.00 26.57 153.43	4 4 4 4 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5	BEAM BEAM BEAM BEAM BEAM BEAM BEAM TRUSS TRUSS TRUSS TRUSS TRUSS TRUSS BEAM BEAM BEAM	Y Y Y Y Y Y	Y Y Y Y Y Y Y Y Y
PROP NO	N	CTION AME	RTY I MODUL	US	AREA	I		DIST
	: an in at in a in a in a in a in a	Unit			In2	In		Ft
1 2 3 4 5	3 X 3 #3 2.375RND 2 X 2 2 1/2 FLA		2.9e 2.9e 2.9e 2.9e 2.9e	+007 +007 +007	1.1 0.328 0.681 0.825 0.25	1 0.4 0.4	.55 .02 443 493 163	
REC NO	N O LOAD LOA CASE TYP	Ε	DADII PX DX	NFORM PY DY	ATIO M BETA	N		
		Units		Lb Ft	Ft-l Deg		=====	

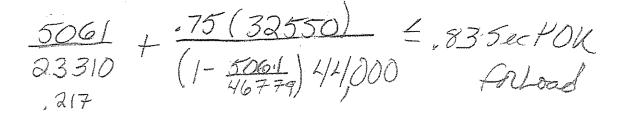
•

PROGRAM : Gen WINANDY GREEN JOB : MERCED RUN : MERCED	eral Frame A HOUSE CO.		PAGE NO. 3 Apr 13 16:01:04 2017 JOB NO. : 1		
REC LOAD NO CASE	N O D A L LOAD TYPE	L O A D PX DX	I N F O R M PY DY	A T I O N M BETA	
Description : Node List : 1 1	5,6	0.00	-216.00	0.00	
Description : Node List : 2 1	DL 13,14,16,17 FORCE	0.00	-432.00	0.00	
Description : Node List : 3 1		0.00	-639.00	0.00	
Description : Node List : 4 2		0.00	-540.00	0.00	
Description : Node List : 5 2		0.00	-1080.00	0.00	
Description : Node List : 6 2	15	0.00	-799.00	0.00	
Description : Node List : 7 3		626.00	0.00	0.00	
Description : Node List : 8 3		314.00	0.00	0.00	
Description : Node List : 9 3		72.00	278.00	0.00	
Description : Node List : 10 3		144.00	555.00	0.00	
Description : Node List : 11 3		0.00	429.00	0.00	

ş

¢

PROGRAM : Gen WINANDY GREEN JOB : MERCED RUN : MERCED		nalysis v2.(-======================================	TIME : Thu	PAGE NO. 4 PAGE NO. 4 Apr 13 16:01:04 2017 JOB NO. : 1
REC LOAD NO CASE		LOADI PX DX	NFORM PY DY	A T I O N M BETA	
Description : Node List : 12 3	16,17	0.00	857.00	0.00	
Description : Node List : 13 4	1,2	312.00	0.00	0.00	
Description : Node List : 14 1	22,23	0.00	-319.50	0.00	
Description : Node List : 15 2	22,23	0.00	-799.00	0.00	
Description : Node List : 16 3		144.00	555.00	0.00	


.

PROGRAM WINANDY JOB : M RUN : M	GRI GRI ERCI ERCI	General EENHOUS ED ED	Frame A E CO.	Analysi		TIME :	Thu Apr 13	PAGE NO. 5 16:01:04 2017 JOB NO. : 1
			======== N O D		DISPLAC			. = = = = = = = = = = = = = = = = = = =
NODE NO		LOAD COMB		DX	DY		ROTATION	
		=====	Units :		In	= = = = = = = = =	======================================	1 = = = = = = = = = = = = = = = = = = =
LOAD CO	MBIN	NATIONS	:					
COMB 1		1.00 X 1.00 X						
COMB 2	+	1.00 X 0.50 X 1.00 X	CASE 2					
COMB 3		1.00 X 1.00 X						
COMB 4		1.00 X 1.00 X						
1		1 2 3 4		0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000)	0.0000 0.0000 0.0000 0.0000	
2		1 2 3 4	ļ	0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000		0.0000 0.0000 0.0000 0.0000	
3		1 2 3 4	().3362).7781).8938).1047	-0.0147 -0.0035 0.0016 -0.0045		0.0000 0.0000 0.0000 0.0000	
4		1 2 3 4	().3362).8834).7677).1047	-0.0147 -0.0031 0.0020 -0.0045		0.0000 0.0000 0.0000 0.0000	
5		1 2 3	C).1550).8236).8766	-0.0184 -0.0045 0.0018		0.0000 0.0000 0.0000	

¢

3×35quare

fa = 3617.5 # 5061 PSI fb= 2821 + 12/104 = 32550 p55 F3 = 2100 #/1.11 = 1892. PSI <u>Kl = 3(84)</u>. Cmx = 75Fa= 23.31H5I = 56.5 Fe' = 12 (3.14) 29,000,000 23 (56.5)2 $F_b = .66(50) = 33HSI$.66 (50) = 33H 5I + 1/3 for PL+WL = 44N5I (1.5.6) = 446779 $\frac{306}{3300} - \frac{33161}{44,000} + 0 < 1$

2×259 Topchord

 $f_{a} = 7579 \frac{\#}{83} \frac{12}{2} = 9131 \text{ P5I}$ $f_{b} = 419 \frac{\#}{12} \frac{12}{50} = 10056\text{PSI} \frac{M}{7} = \frac{1673}{783}$ $f_{5} = 122/.83 = 147.951$

Fa = 21,066 PSI

Fb = = 6 (50) = 33,000,P5I +'2 FORWL+DL

 $F_{0}' = \frac{12(3.14)^{2}(2900000)}{23(69.2)^{2}}$ = 30739 PDI

<u>-9/3/</u> + <u>10056</u> + 0 = 1 33,000 + <u>33,000</u> + 0 = 1 $\frac{9/31}{21,060} + \frac{.75(10056)}{(1-\frac{9/31}{30736})} = .78$

Sect OU

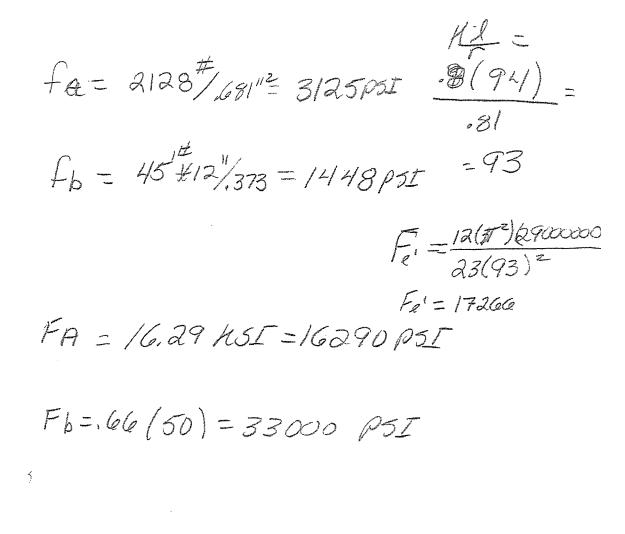
#3 Cross Tie

Fa = 6784/,328" = 20683

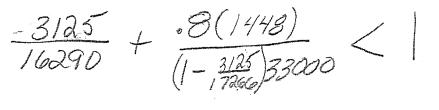
Fa=.6(50,000)= 30000

 $\frac{20683}{30000} \leq 15ectok$

Tension Strut.

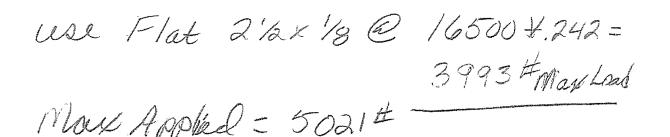

- $(125 \neq (2.5 .5625) = 2.42''^{2}$
- $f_a = 2313/.242 = 9553P5I$

Fa= 25000 X.66 = 16500PSI


 $\frac{9538}{14500} \leq 1$

SectOK

2.3755trut



 $\frac{3125}{33000} + \frac{1448}{33000} \leq 1$

Sect Okfor Lovel

XBrase

USE 1/4 'double Plate W/ 3/2Bolt 3/8 bolt = 2310#

i25 * (12-125) * 16500 = 3610 #

Use 3 Wind Brace Sets

Gablo Post

fa=1206[#],681"= 1771P5I

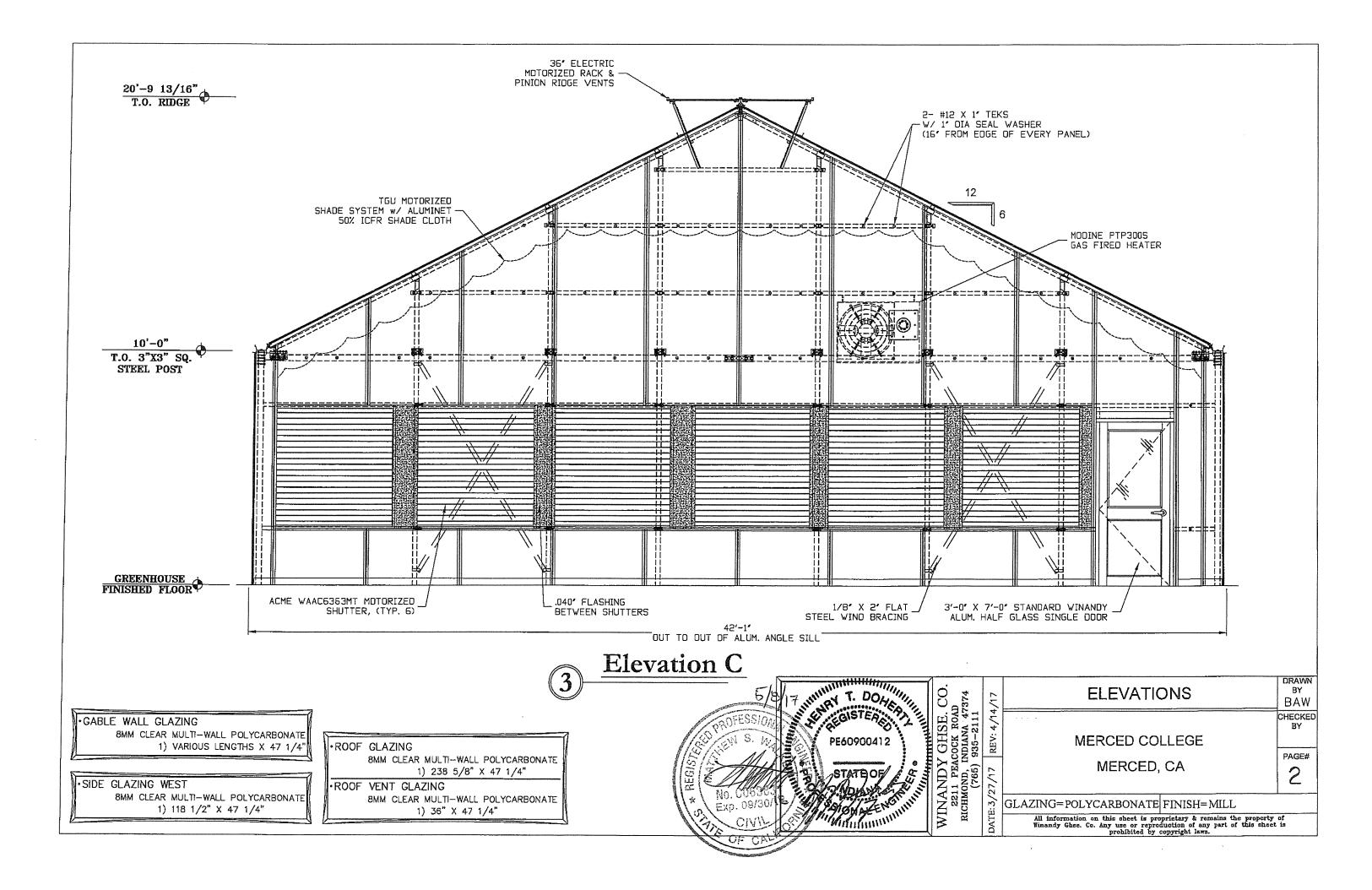
M.C.

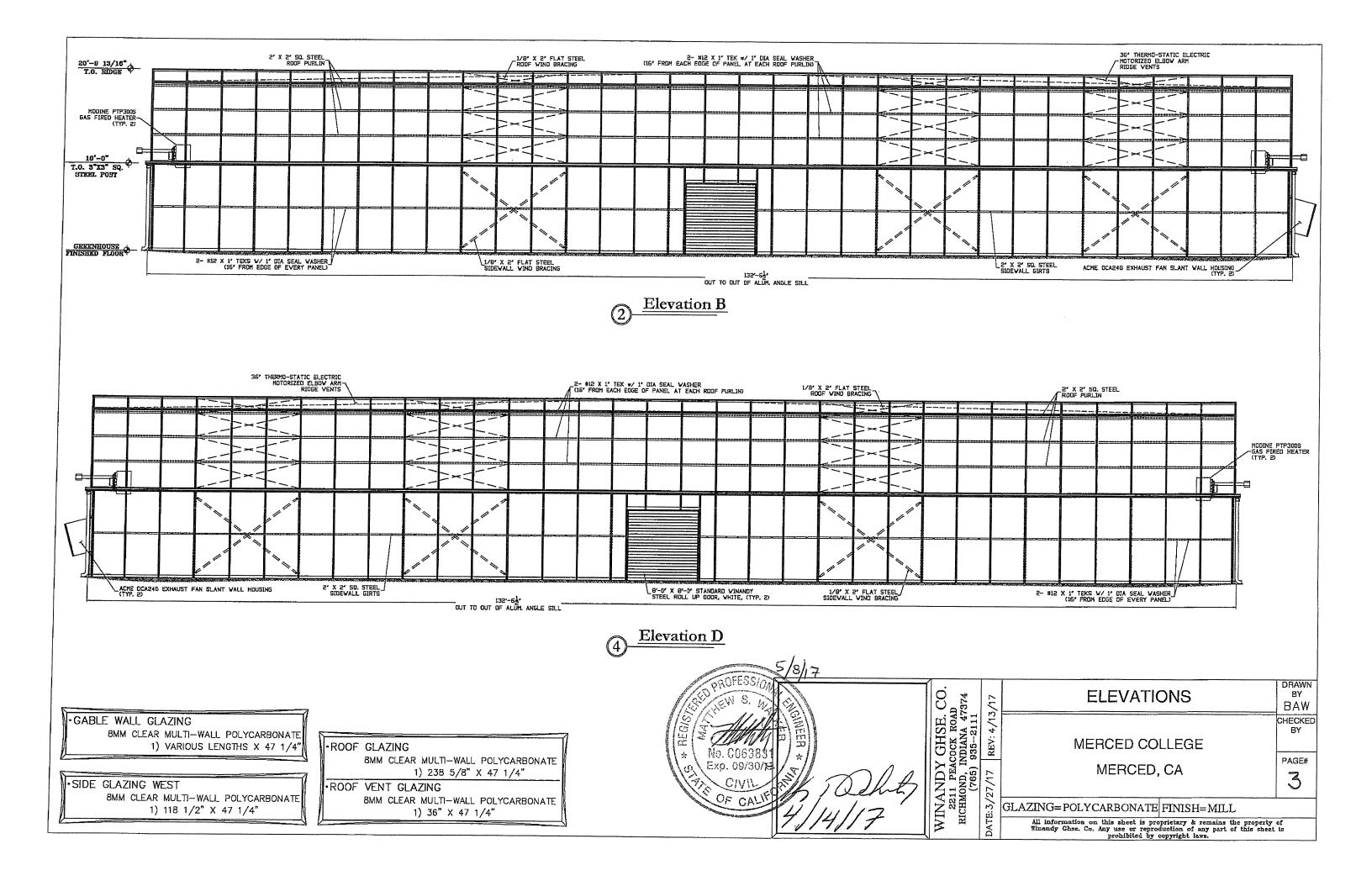
FR= 6.420 H5I

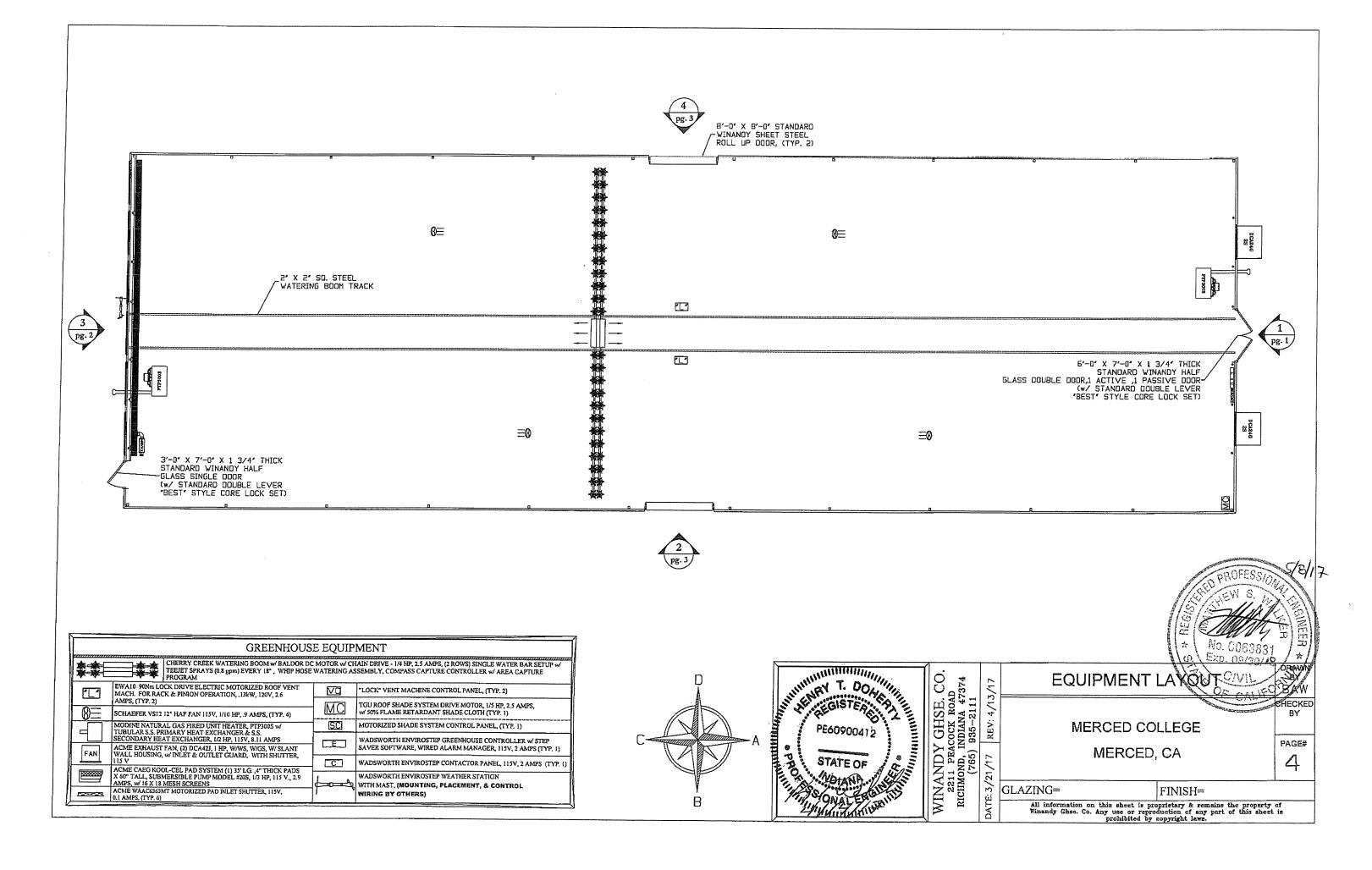
(57)(216) =187 6 81

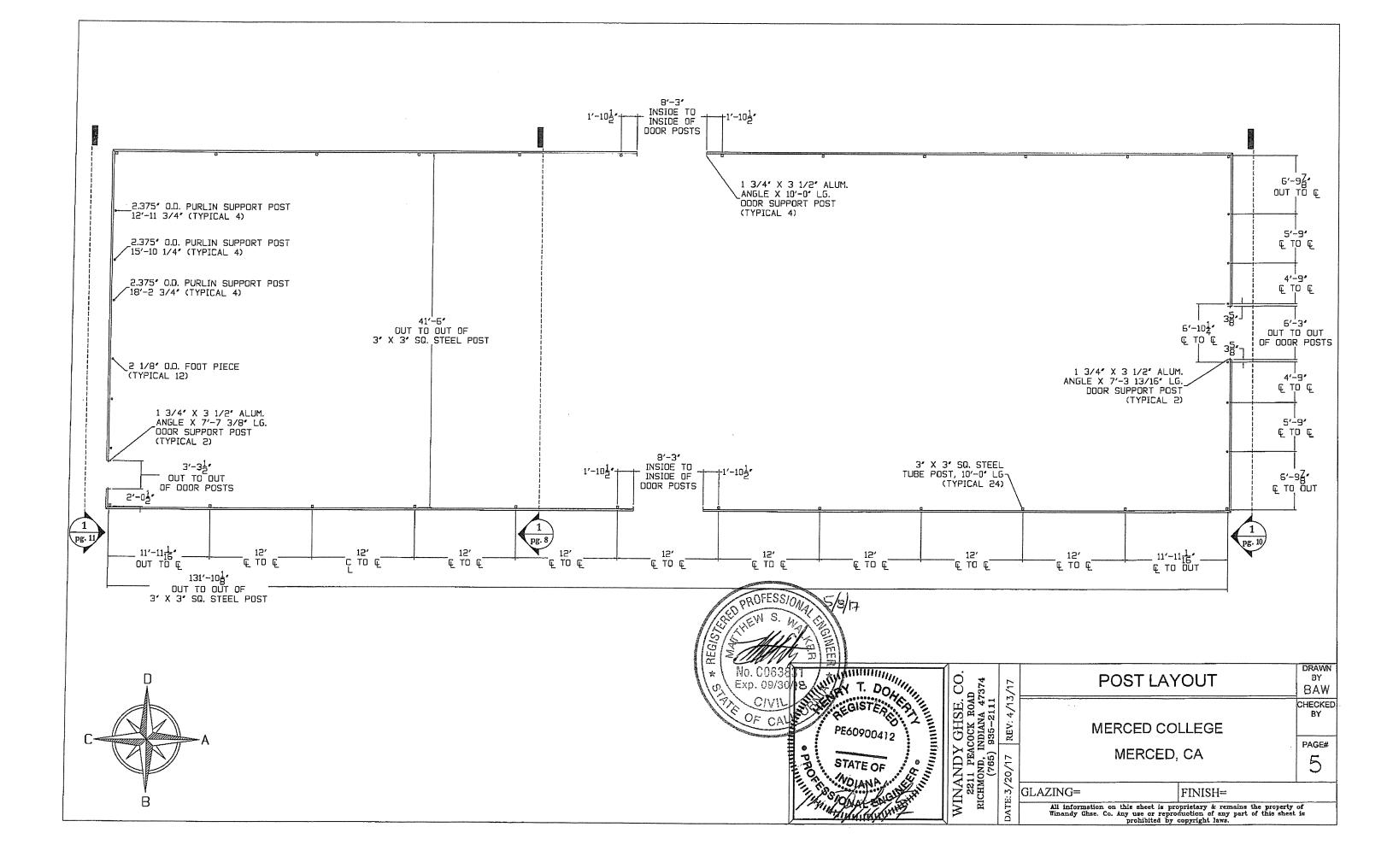
1771 PSE 21 Sector

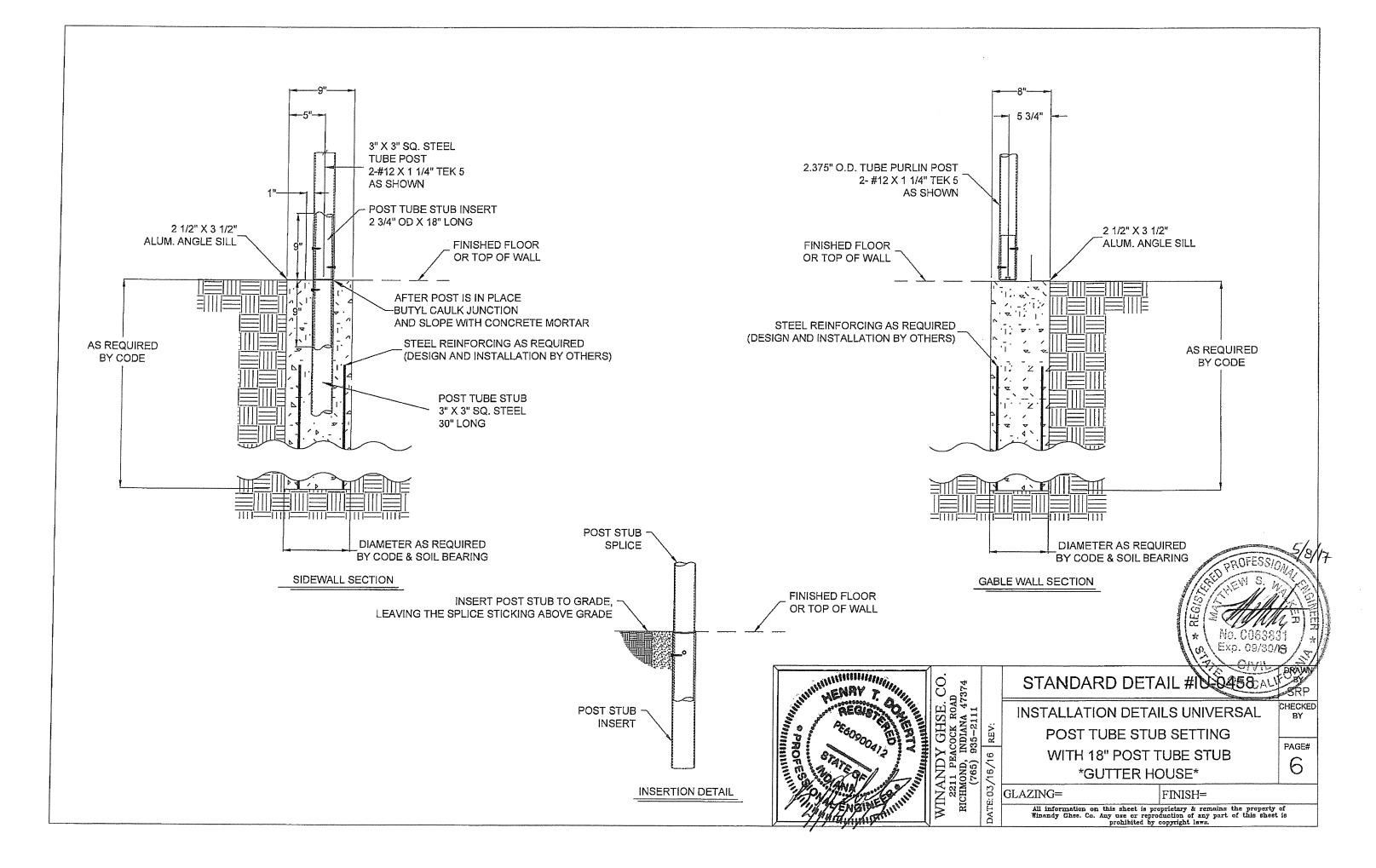
X Brace

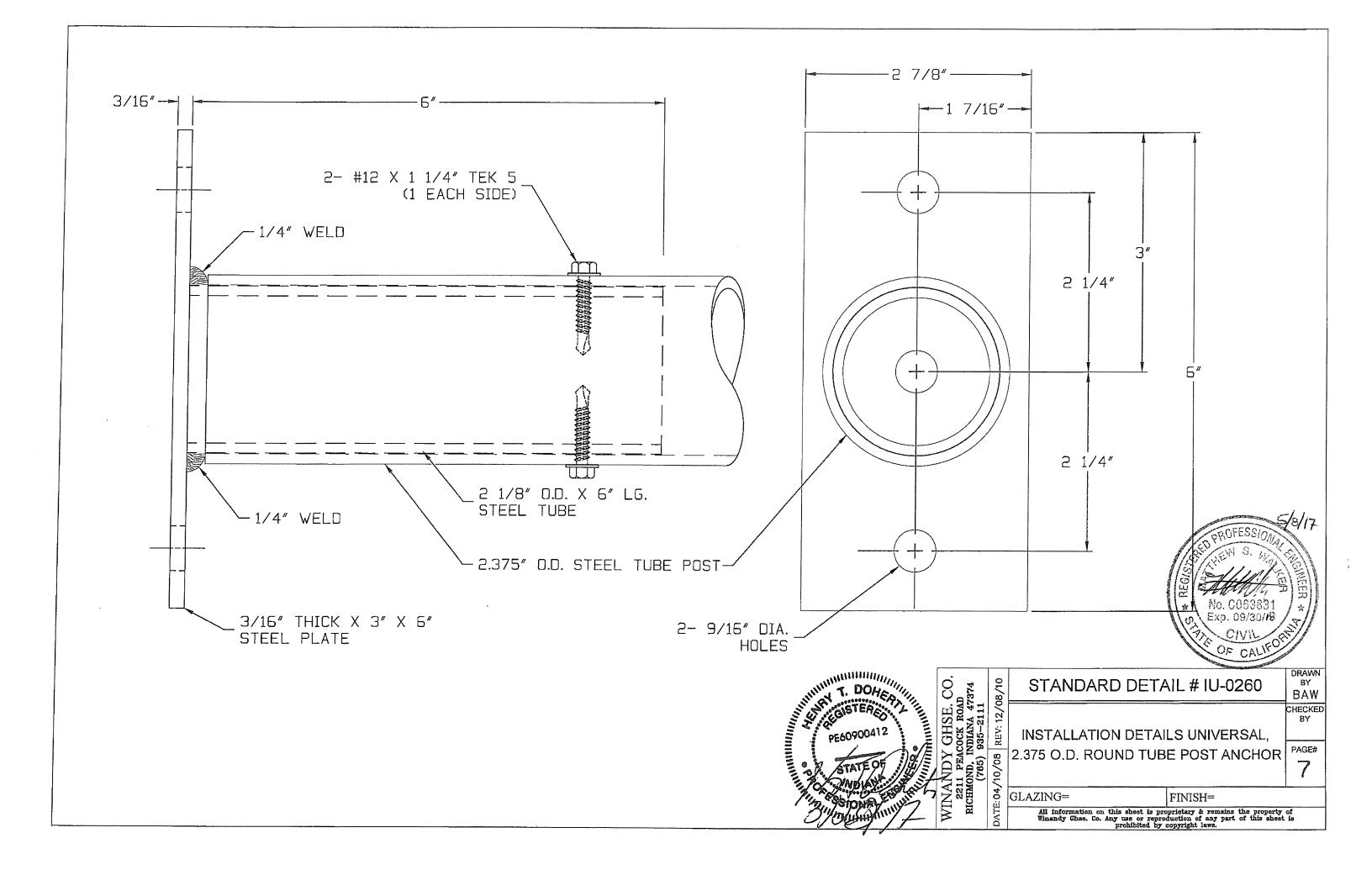

Use 18 X2/2@ /6500 +, 242 = 3992 #max Applied load = 5021 use double "14" Plate at Basen / 36 kolt Max Shear = 2310 # 1/4" × (1.5-.625) × 16510 = 3610# We 3 sets Wind Baces

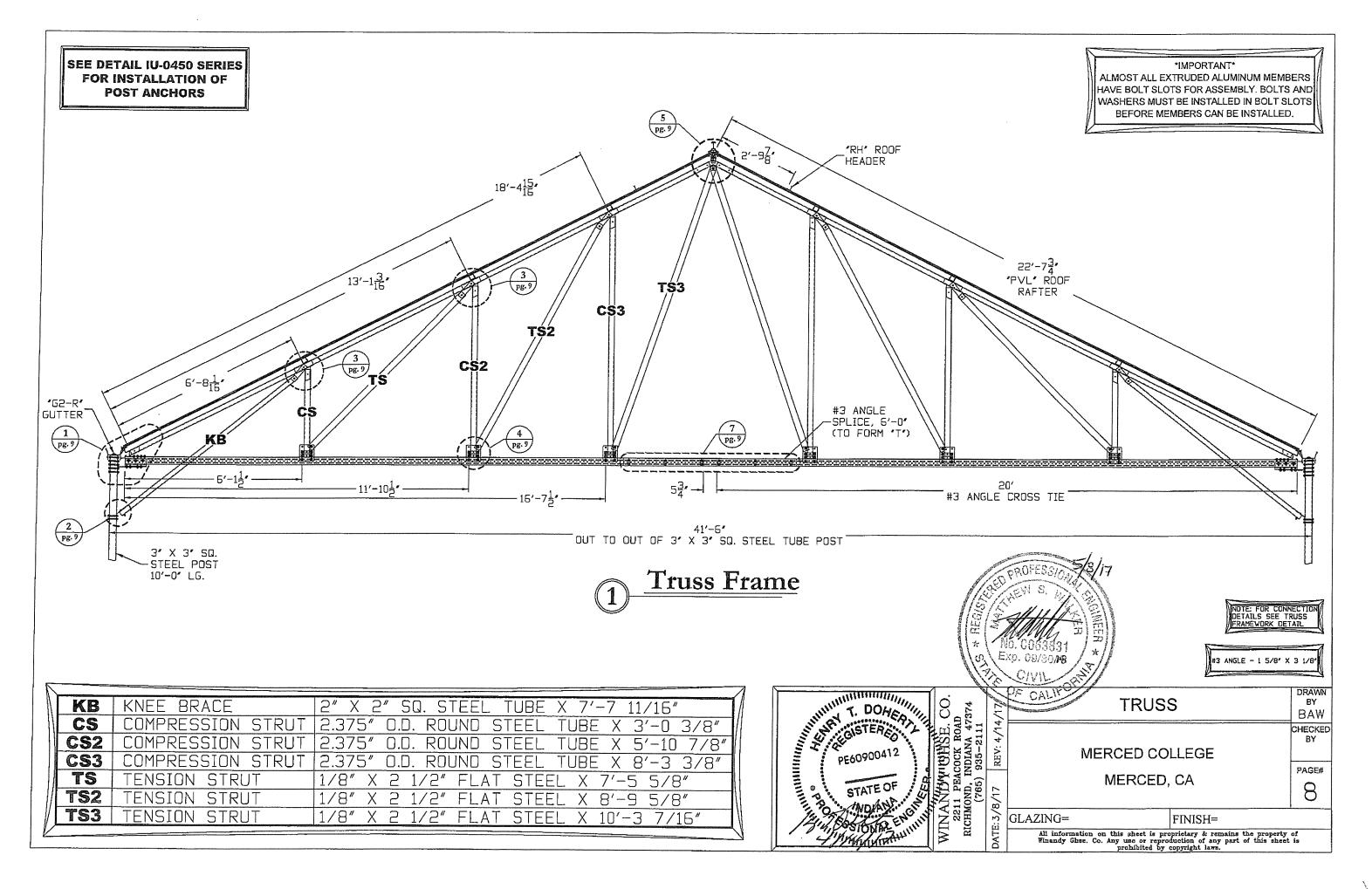

1/2" Bolts are Masz# Single Shear 8514 # double Shear

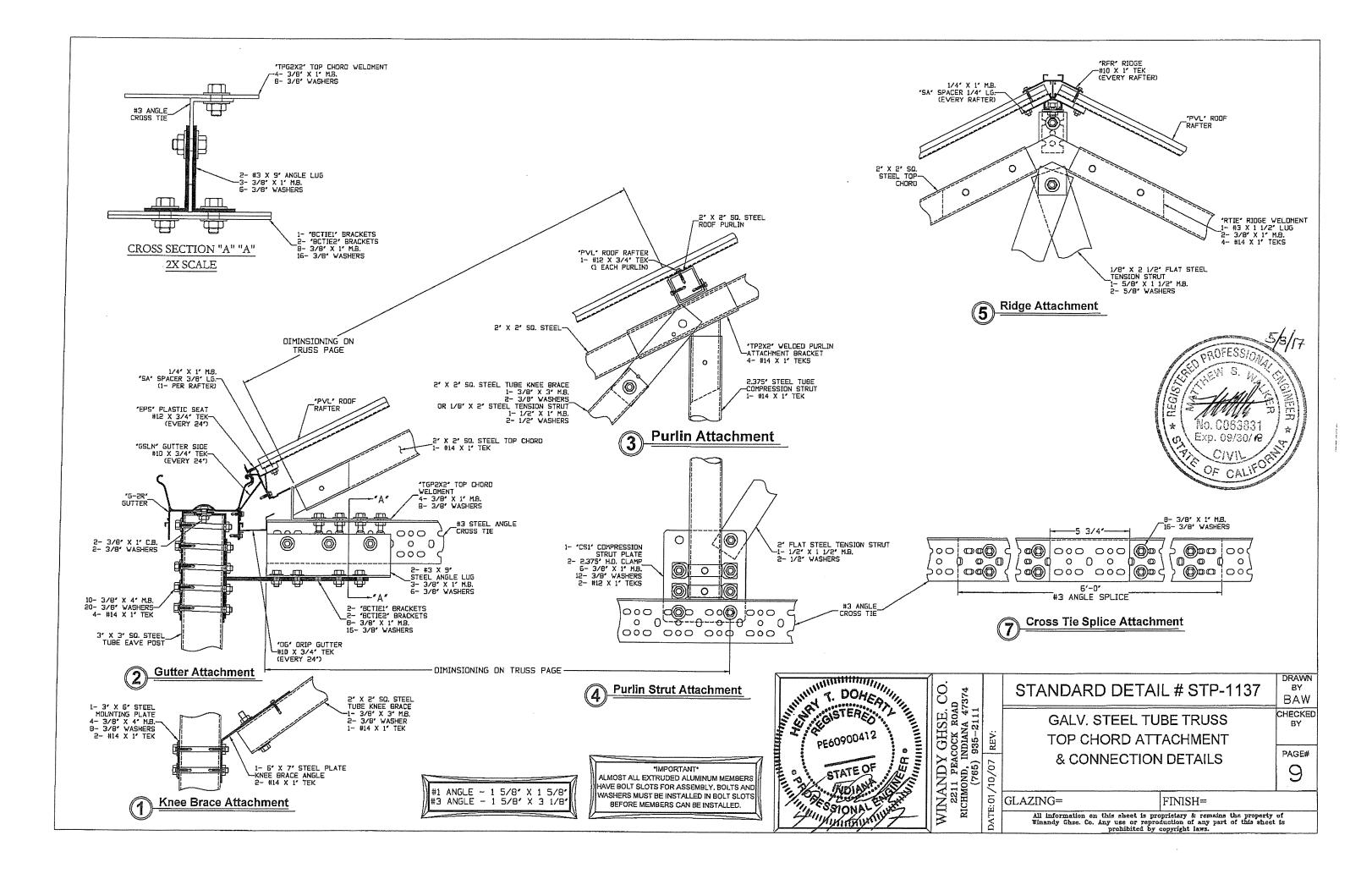

3/3 Bolts are 2310# Single Shear 4/620# double Shear

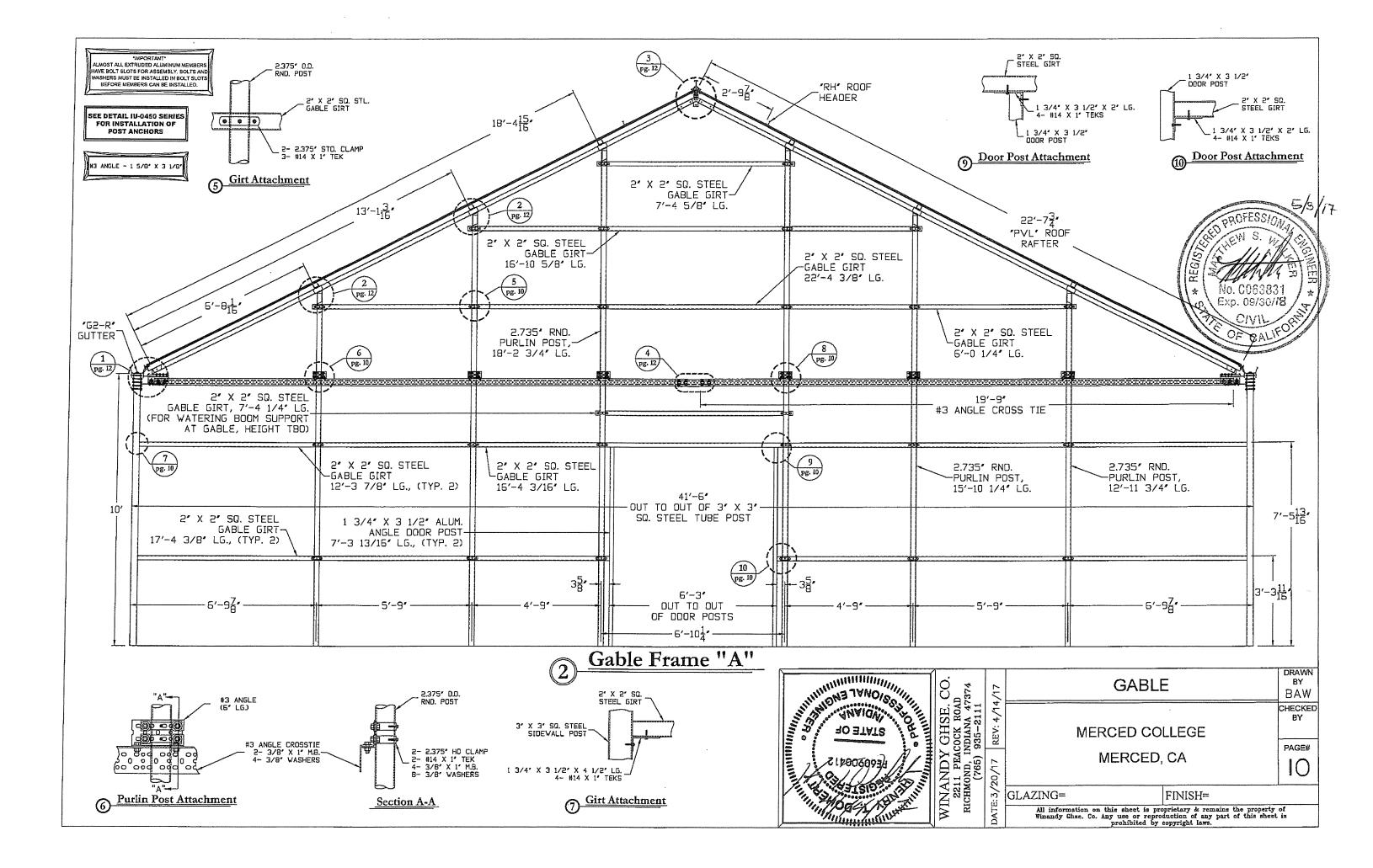

All Connections pass More then Sufficient Buts 652 Allphel Loads

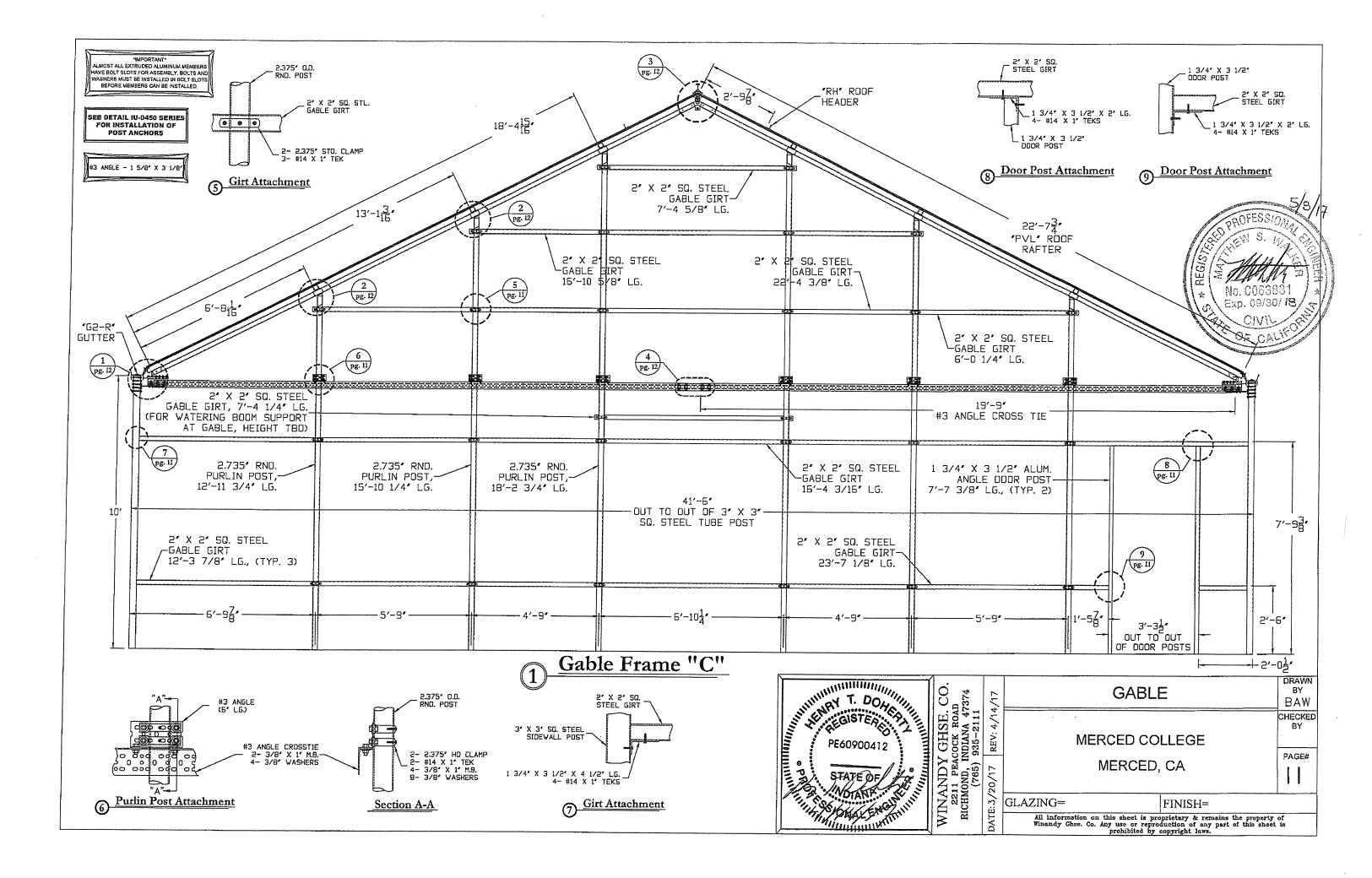


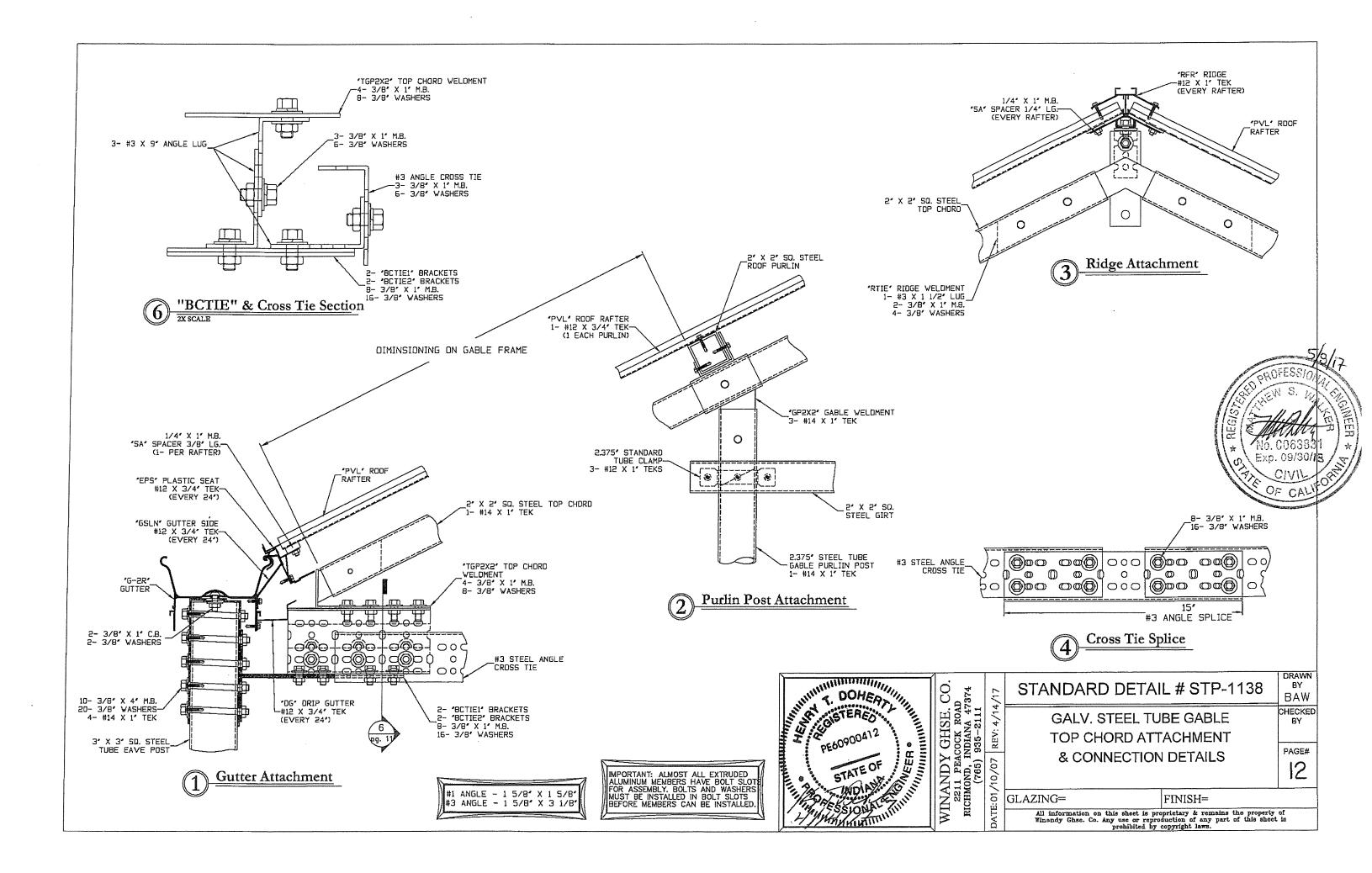


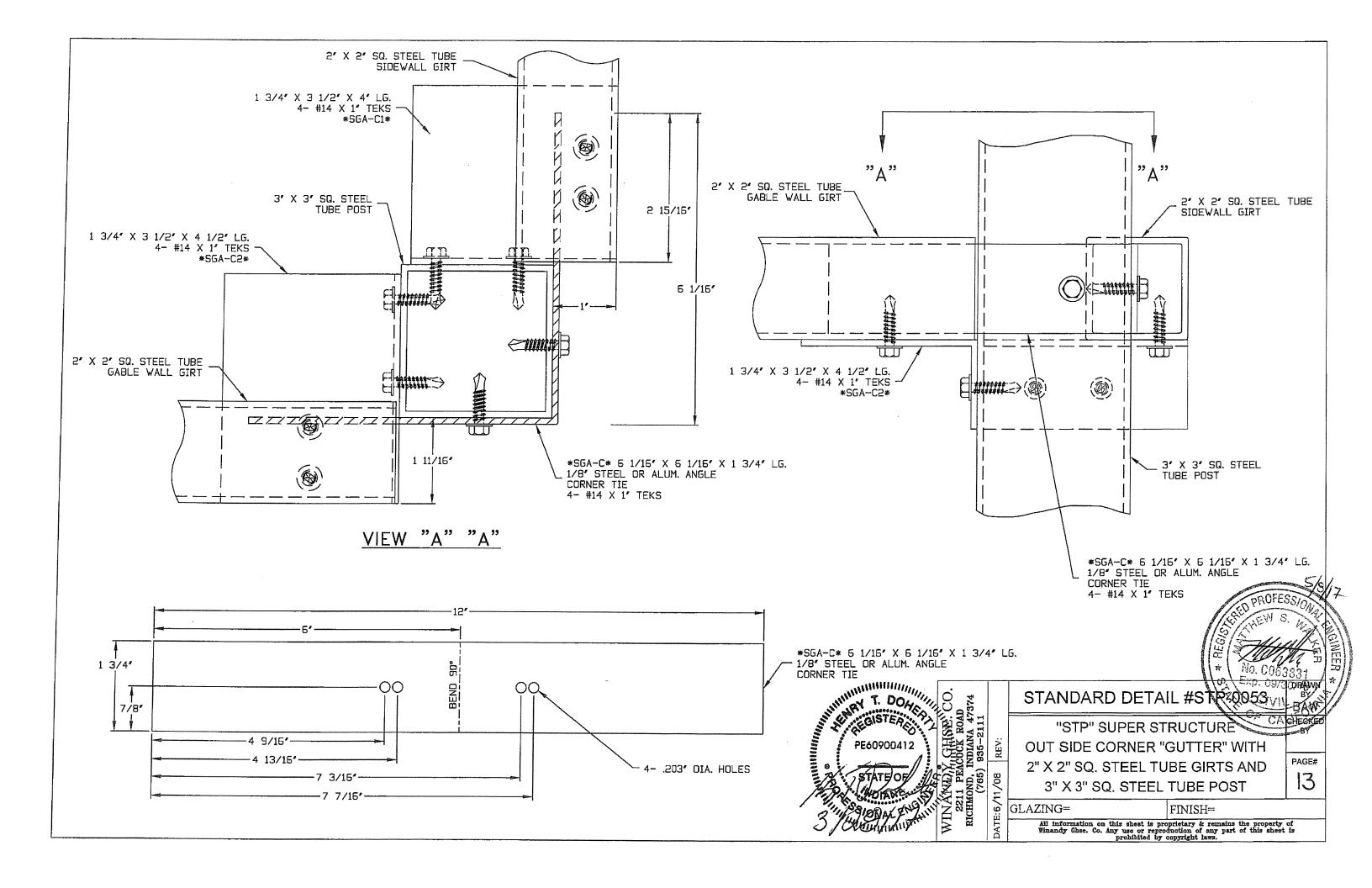


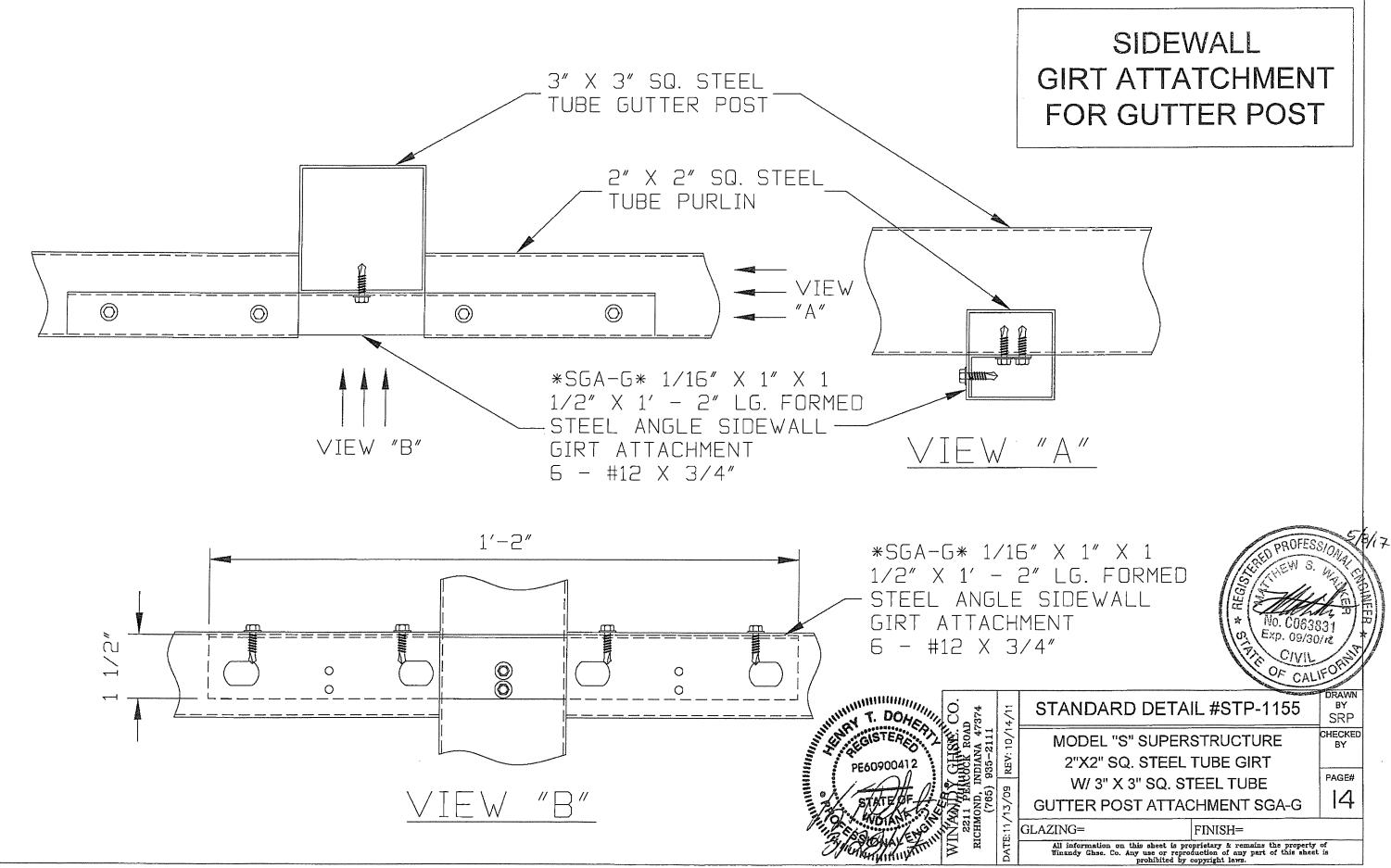


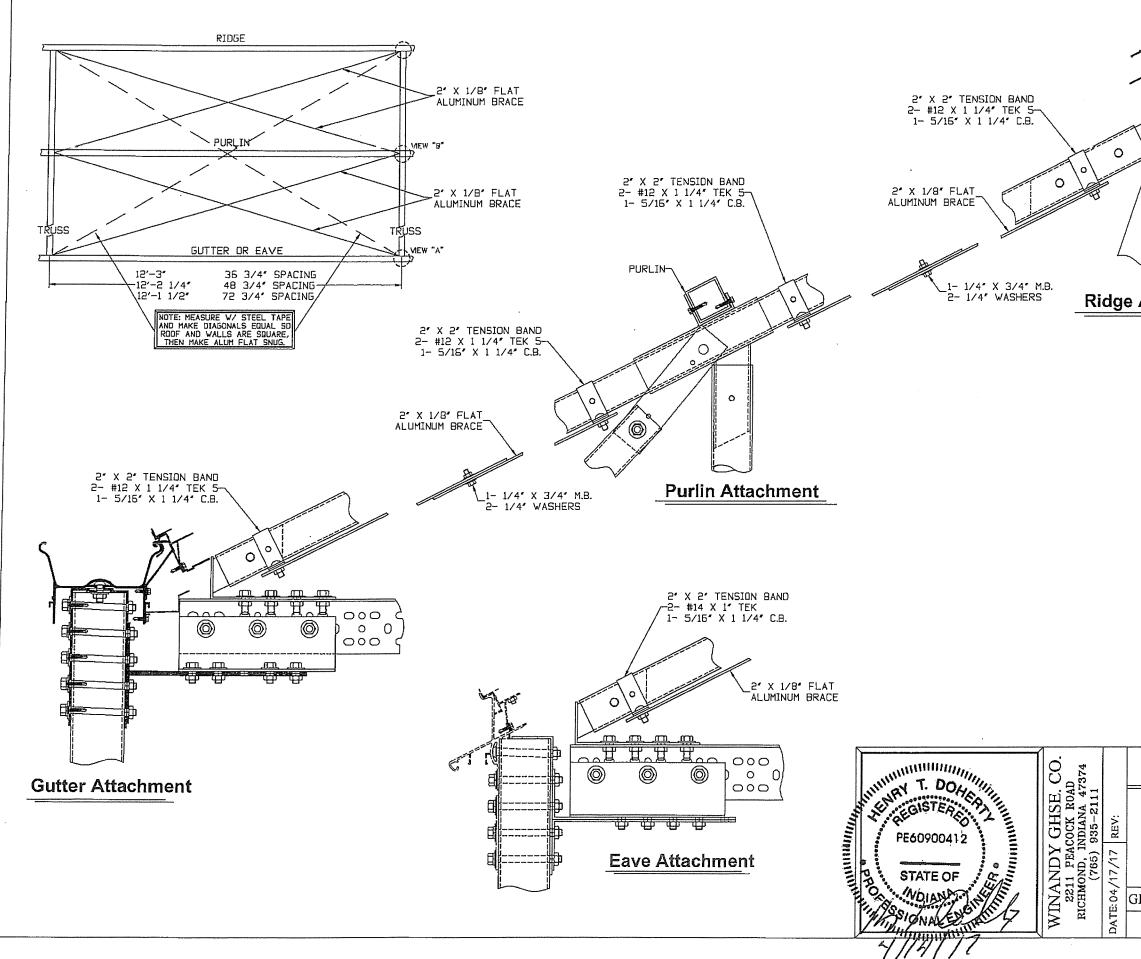


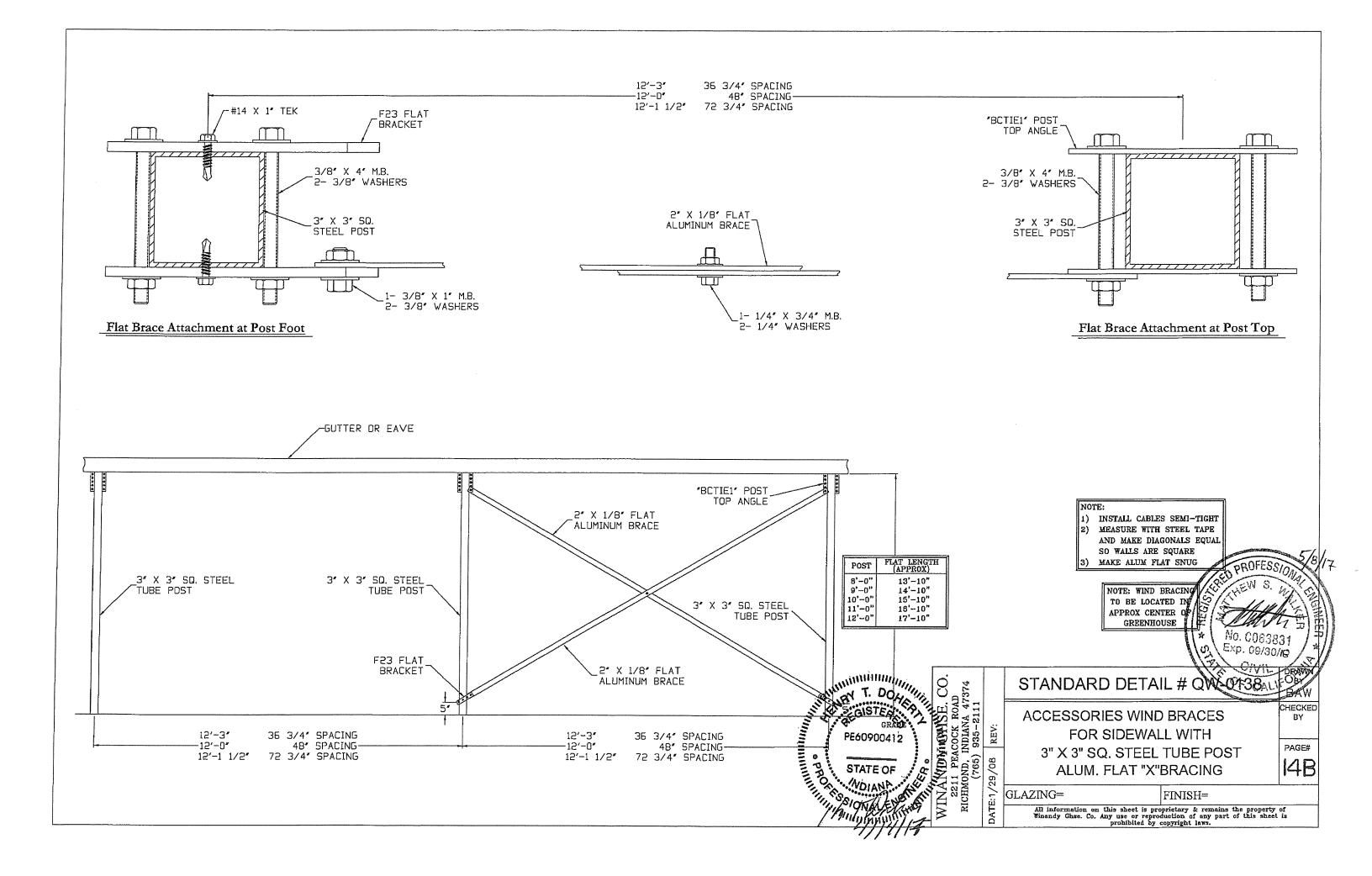


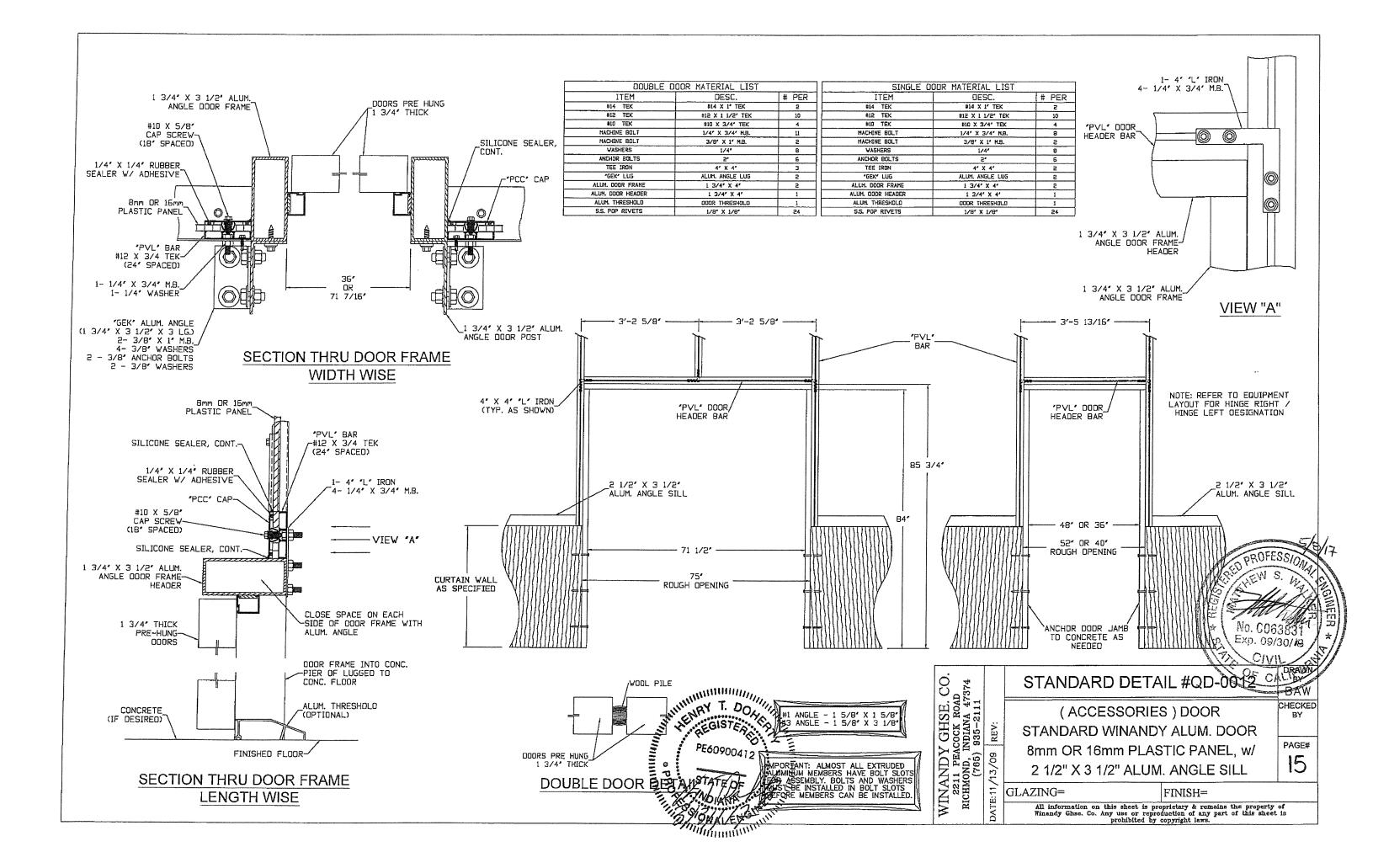


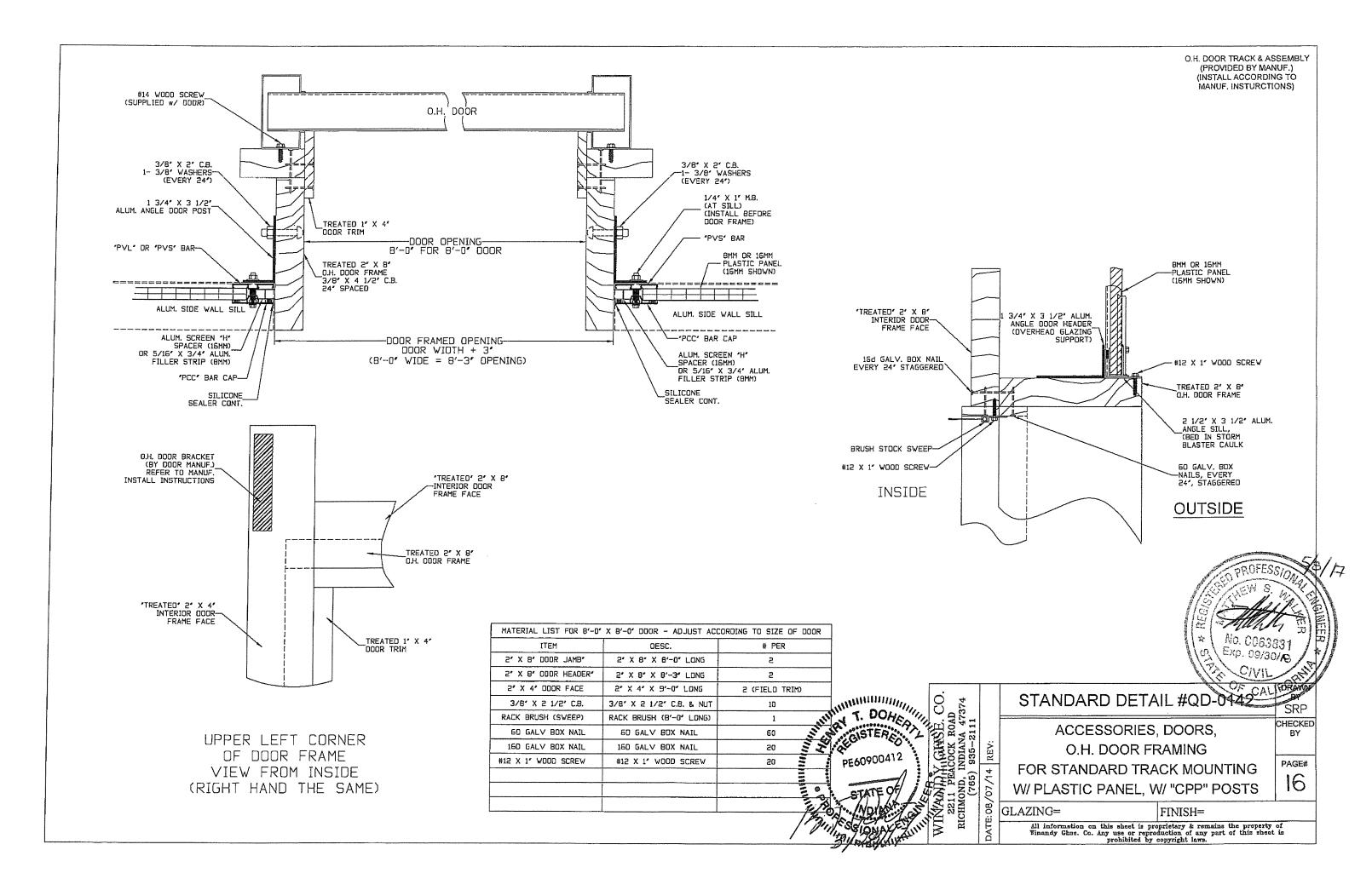


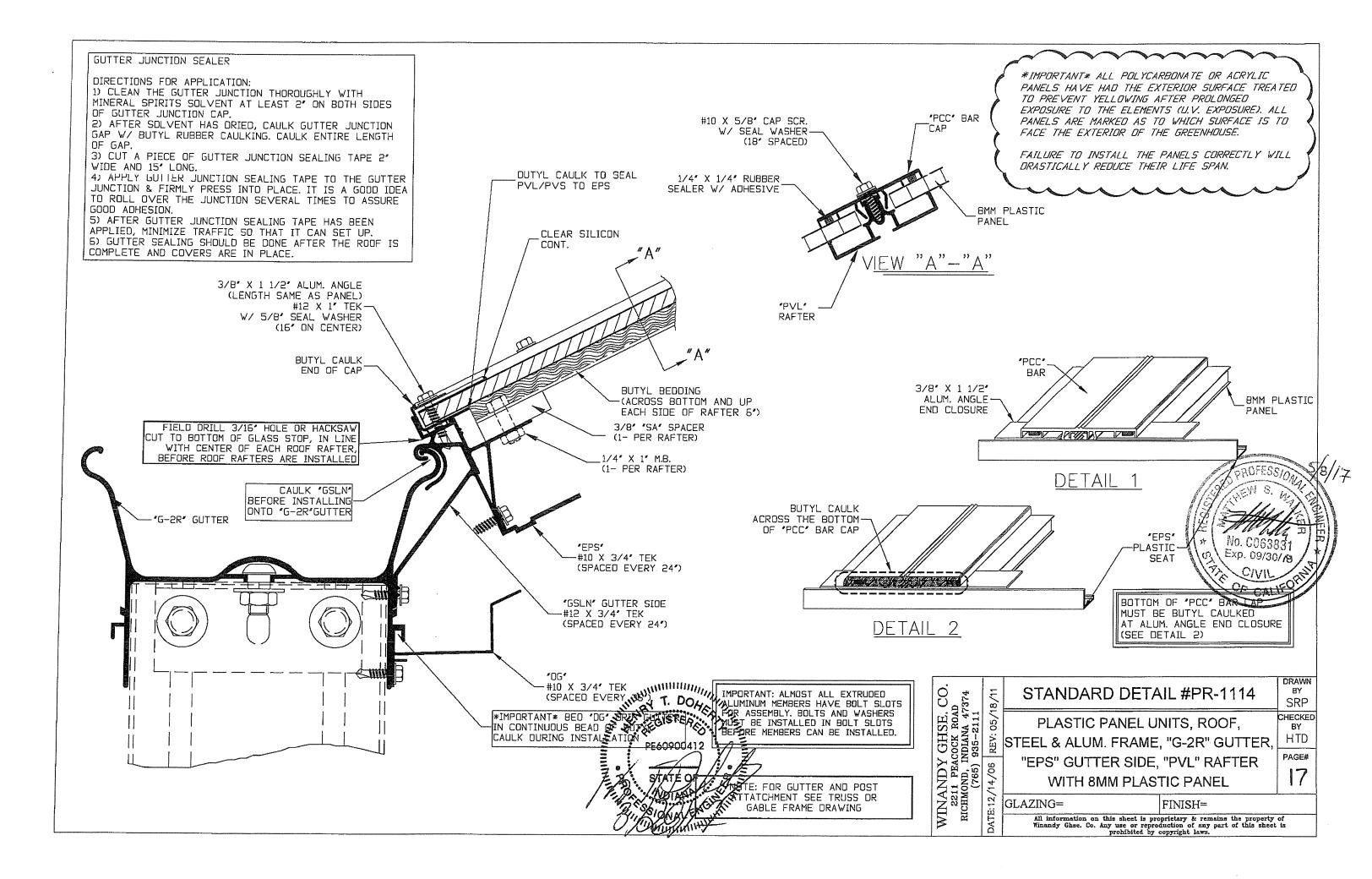


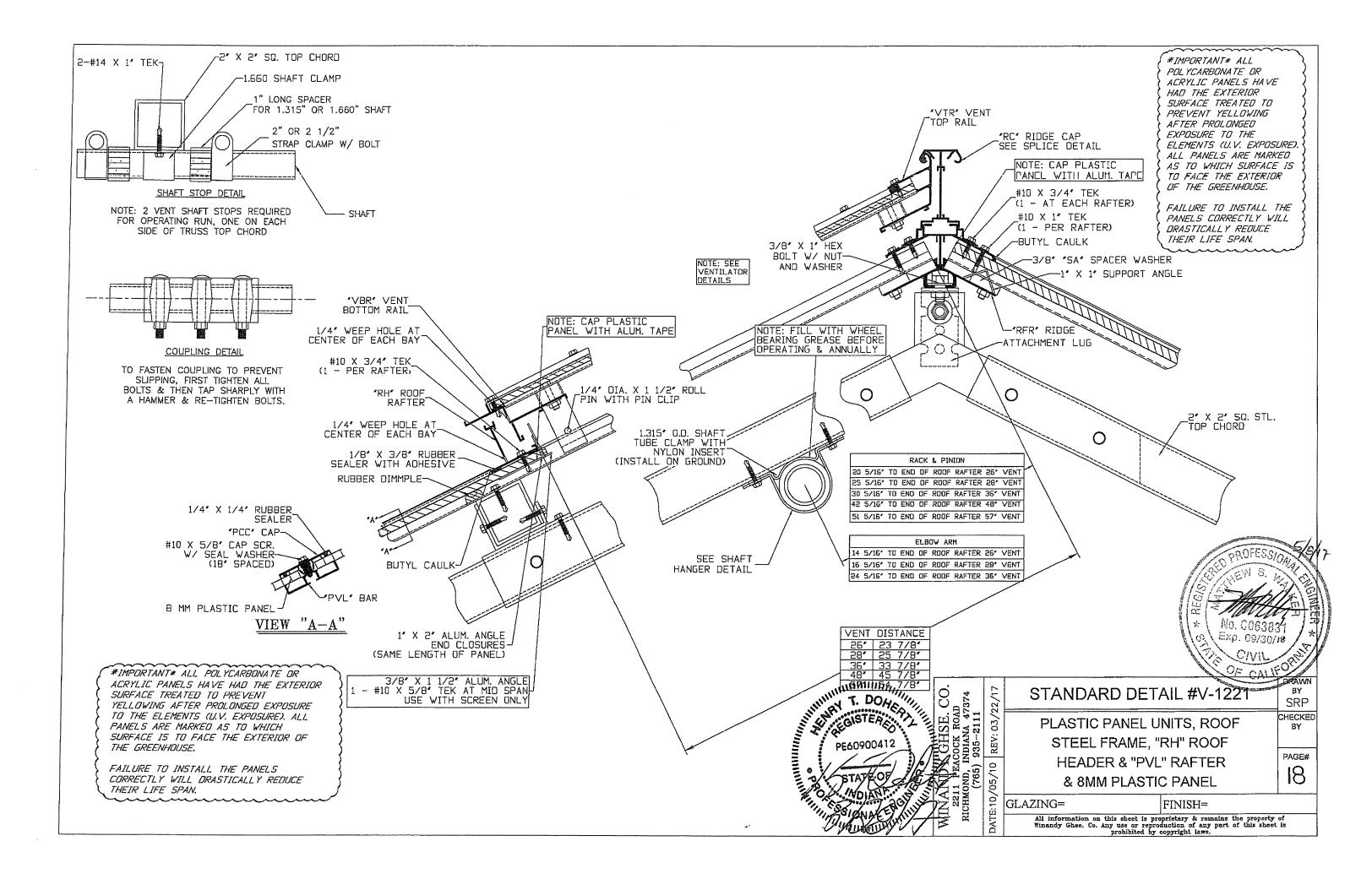


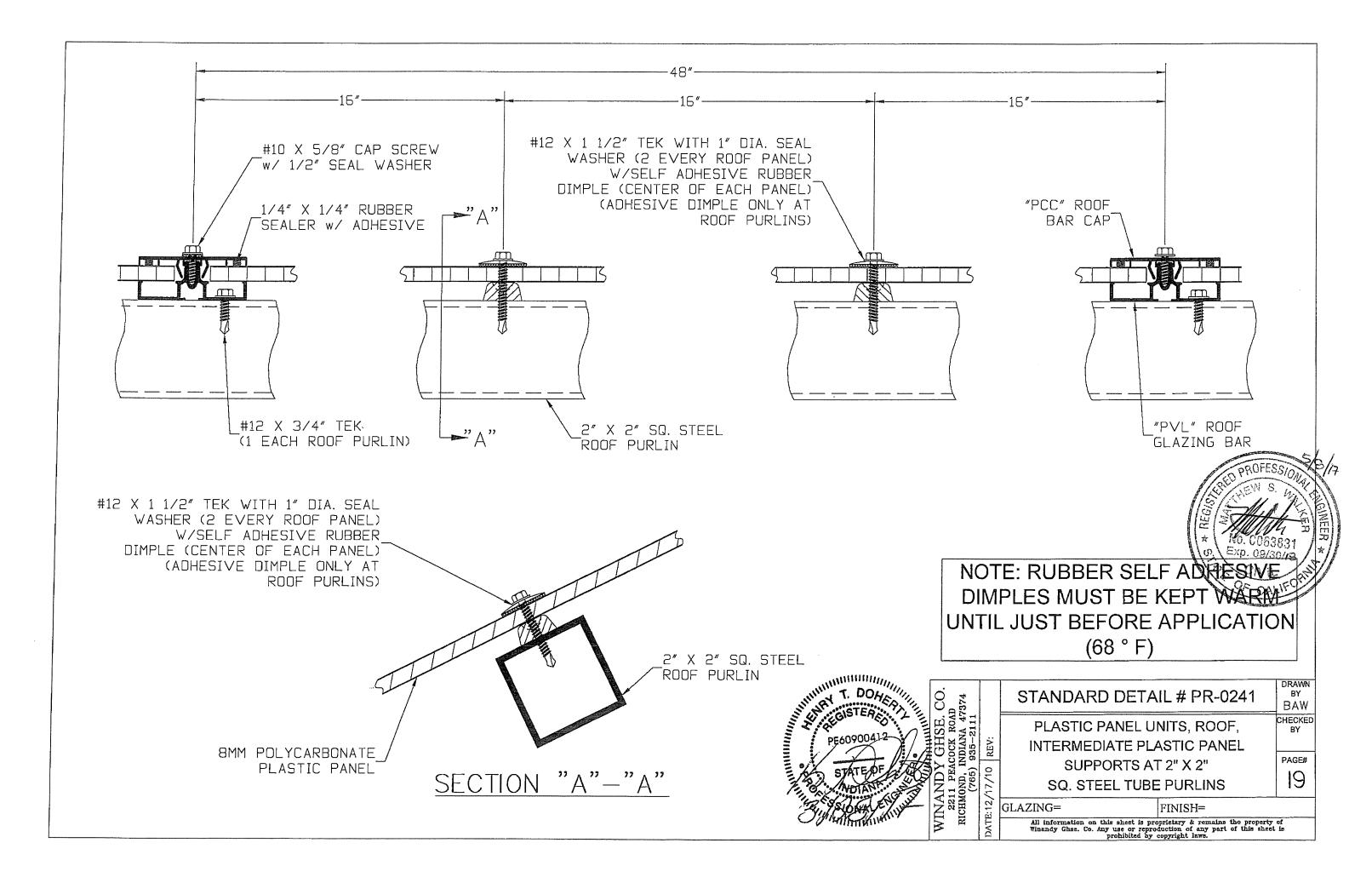


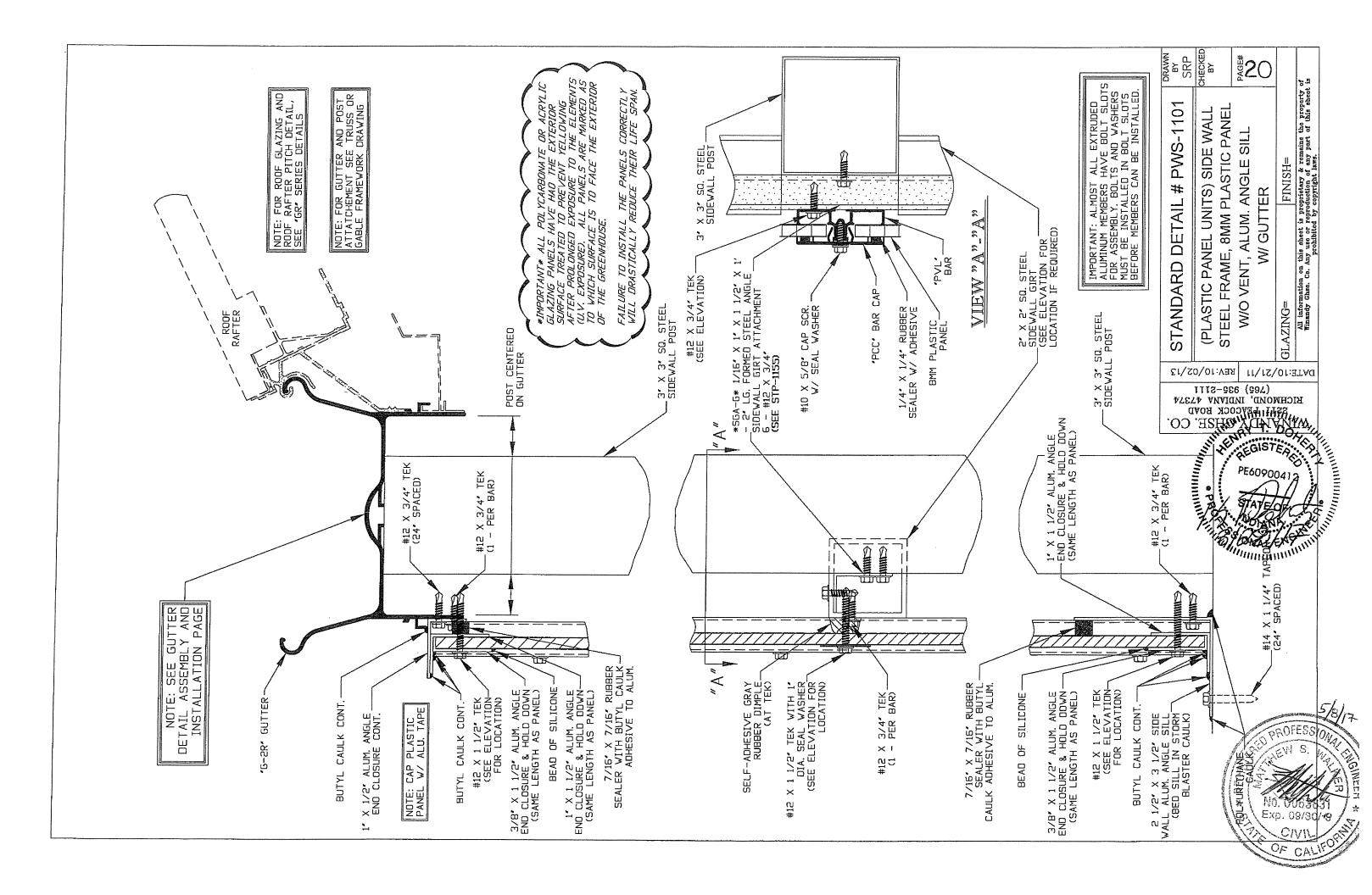


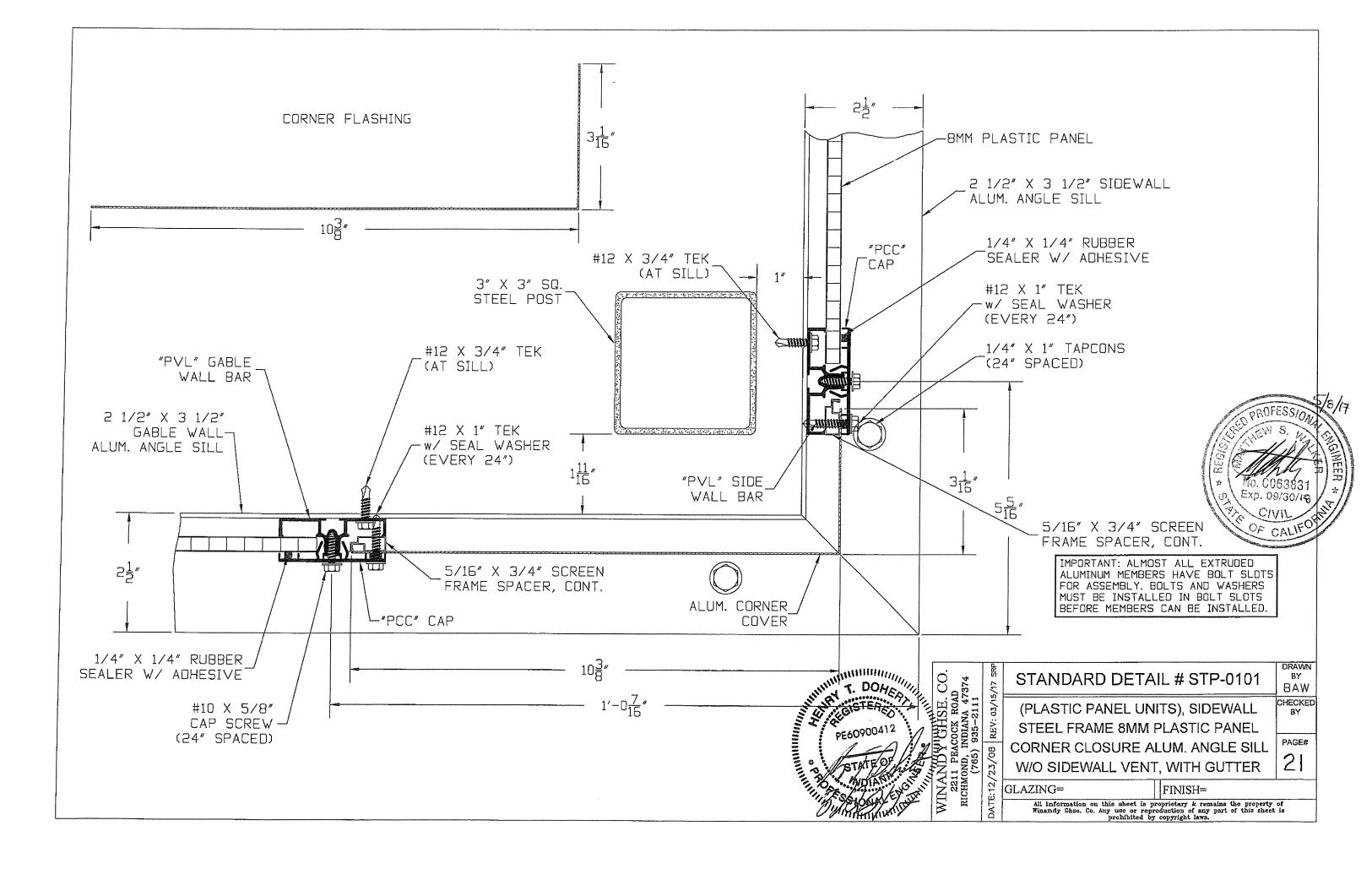


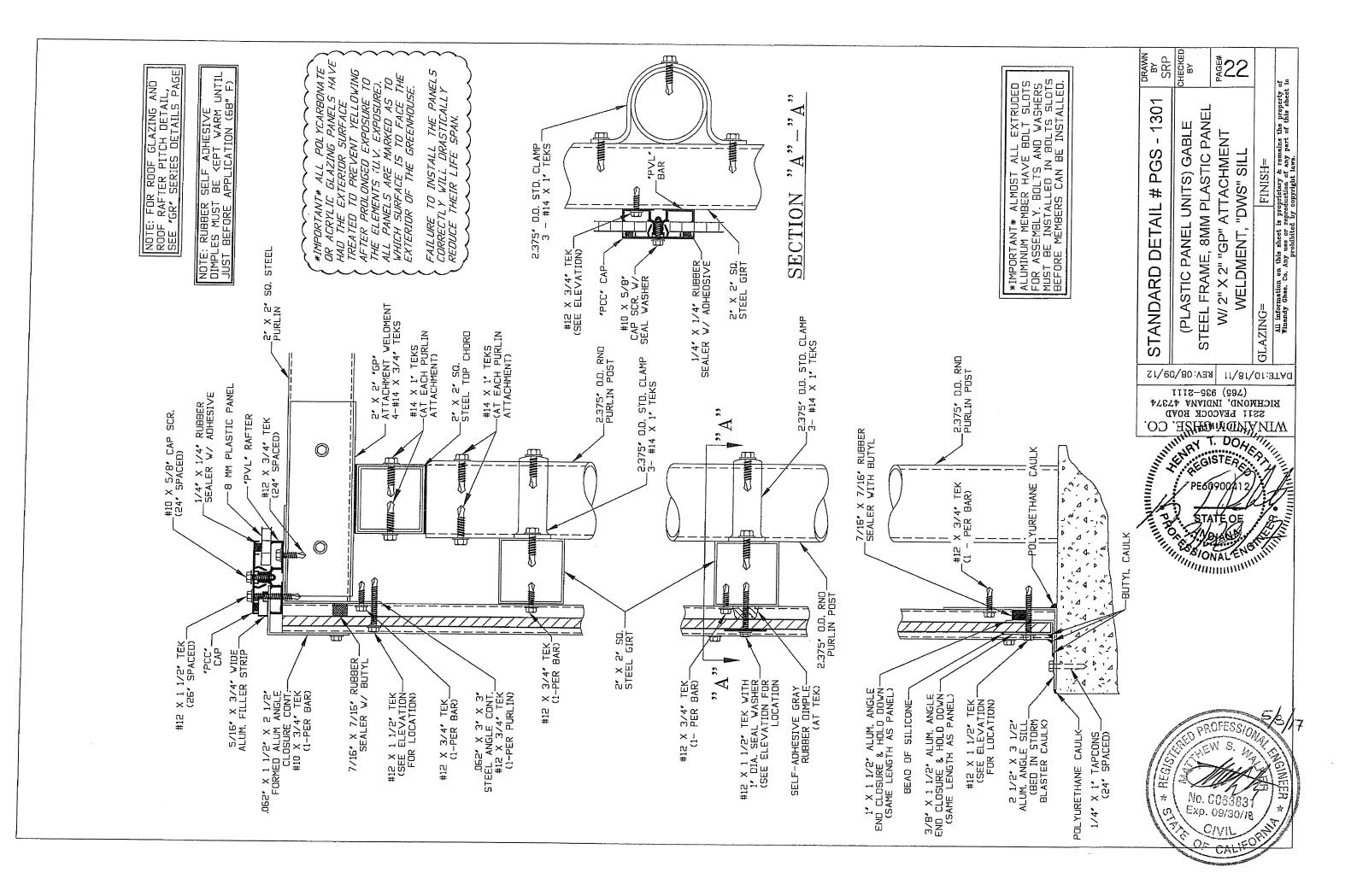


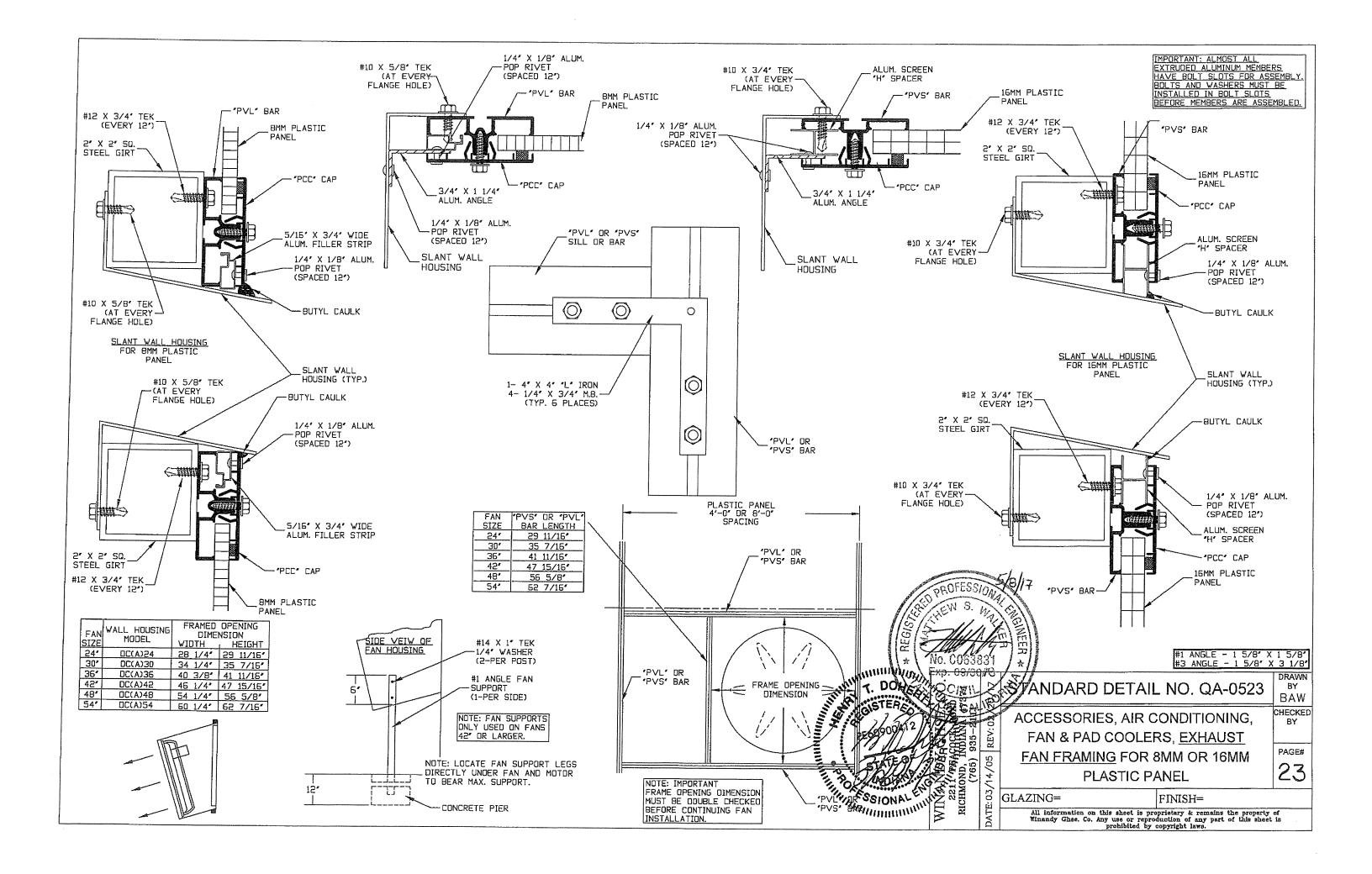

2' X 2' TENSION BAND 2- #12 X 1 1/4' TEK 5 1- 5/15' X 1 1/4' C.B. 2' X 1/B' FLAT ALUMINUM BRACE		
Attachment		
No. CO63831 Exp. 09/30//8	E ["7"1 H	
STANDARD DETAIL # QW-0452	DRAWN BY	
	BAW	
ACCESSORIES WIND BRACES	CHECKED BY	
ROOF "X" FLAT BRACING WITH	PAGE#	
2" X 2" OR 3" X 3" SQ. STEEL TUBE PURLINS	44	
GLAZING= FINISH=	of	
All information on this abset is proprietary & remains the property Winandy Ghss. Co. Any use or reproduction of any part of this sheet prohibited by copyright laws.	ei	

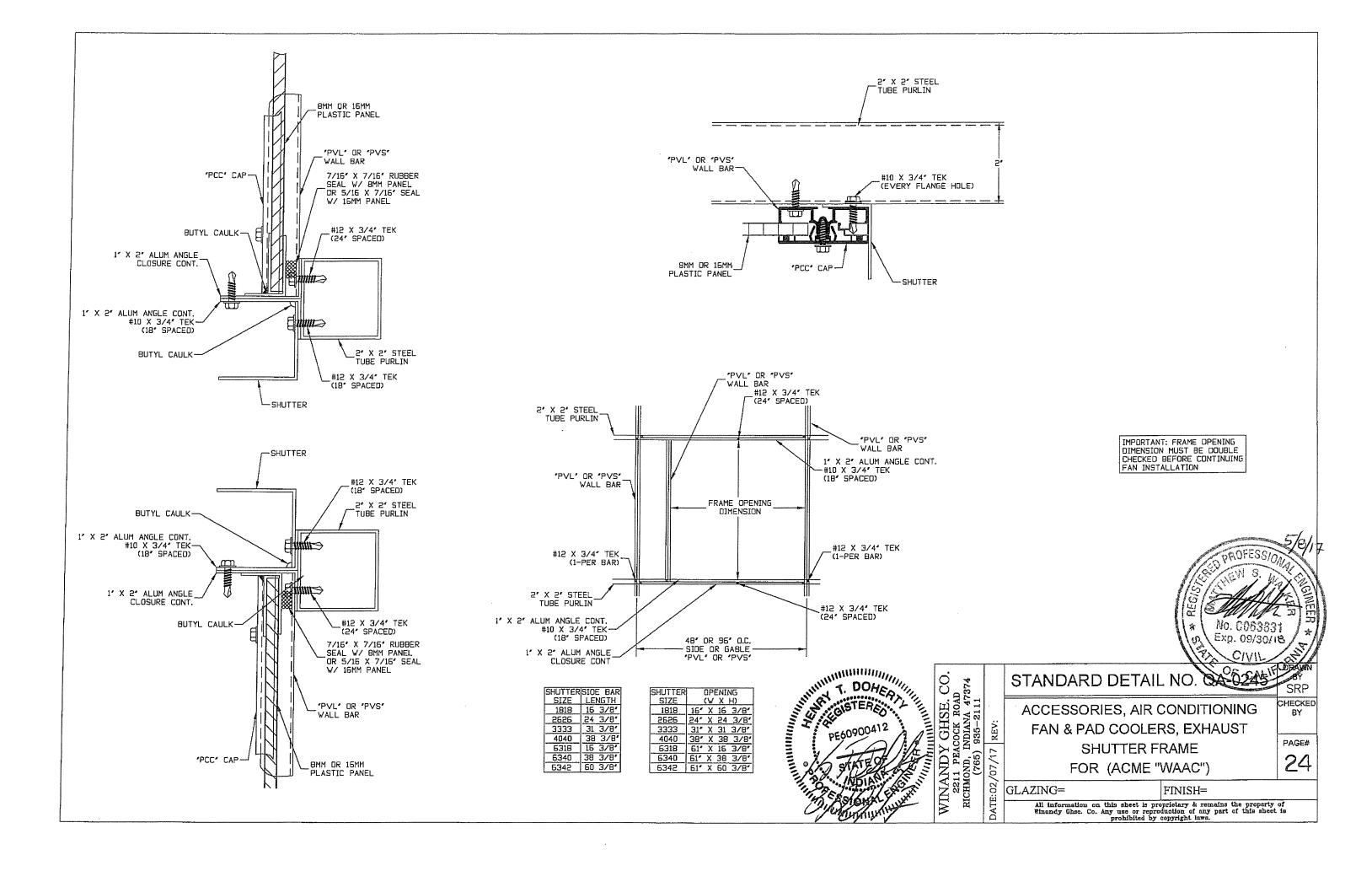


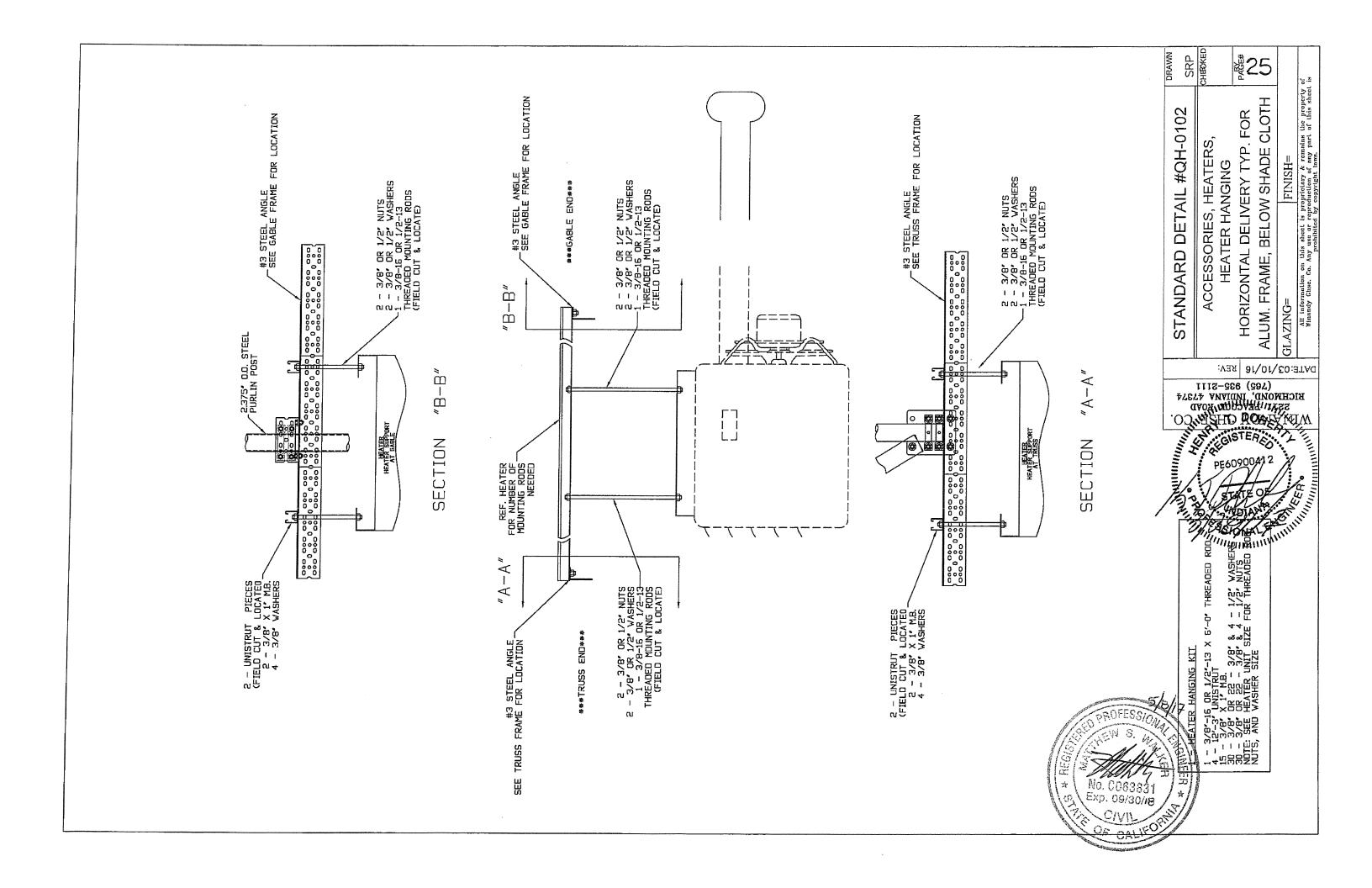


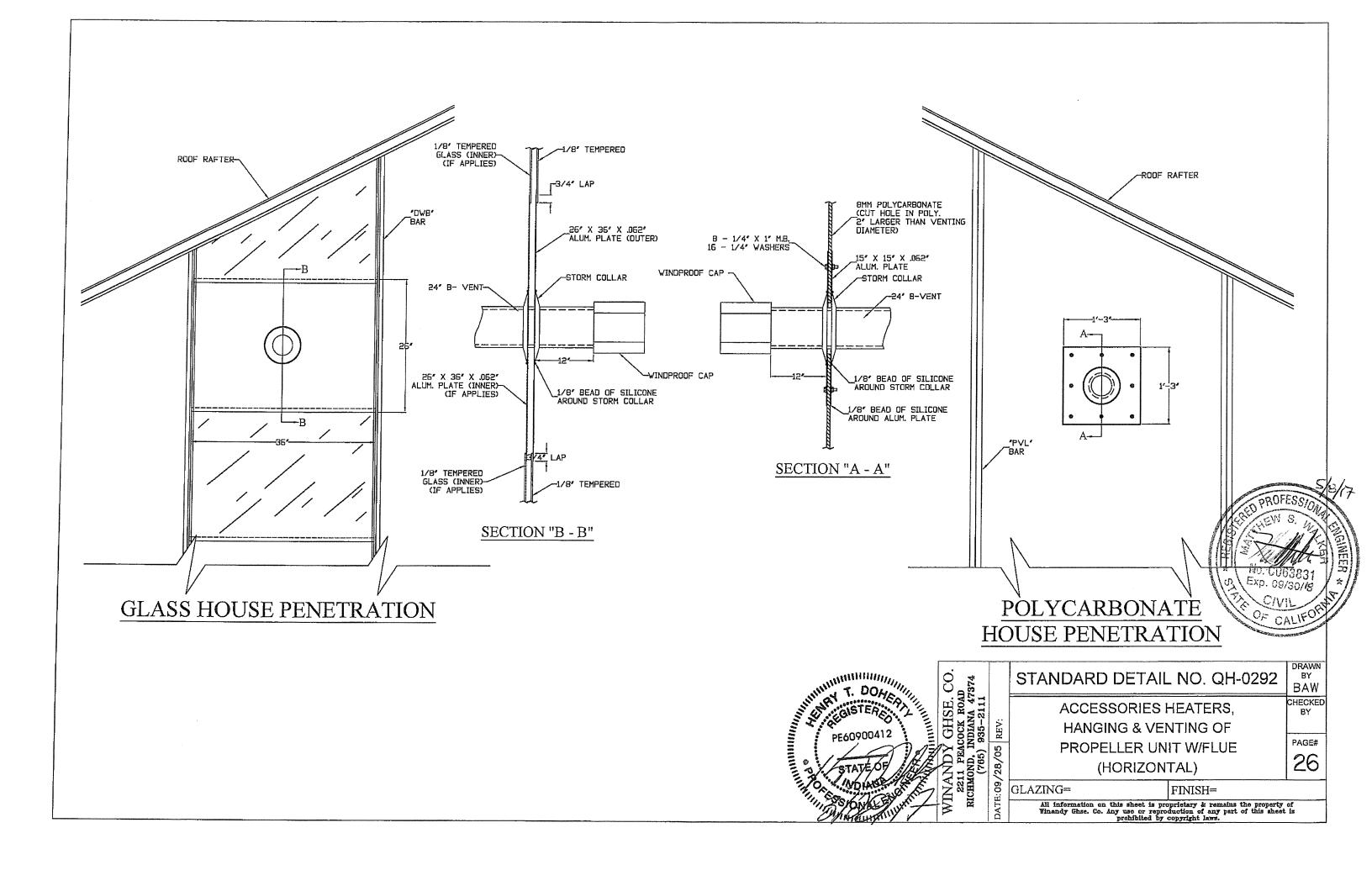


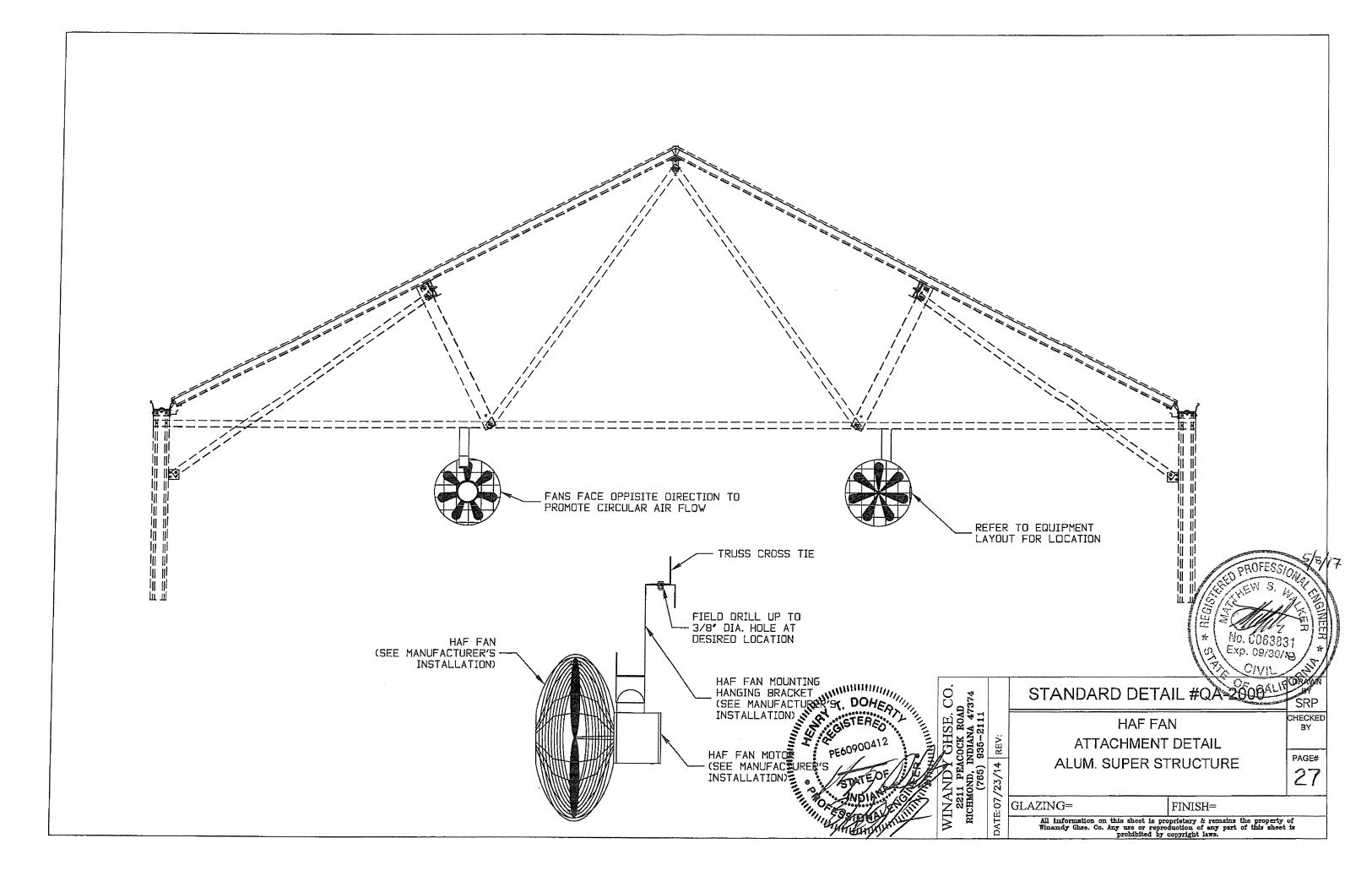


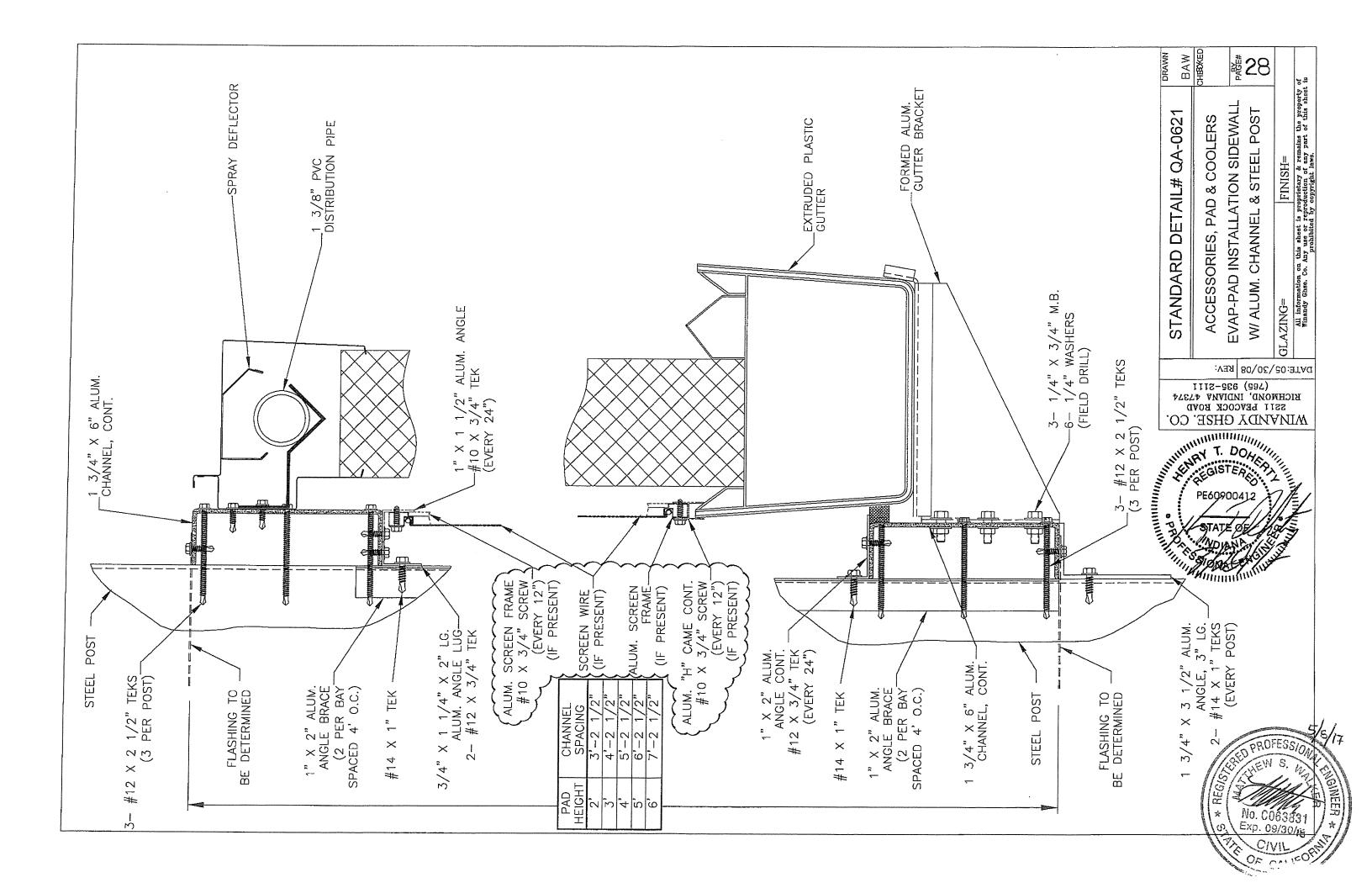


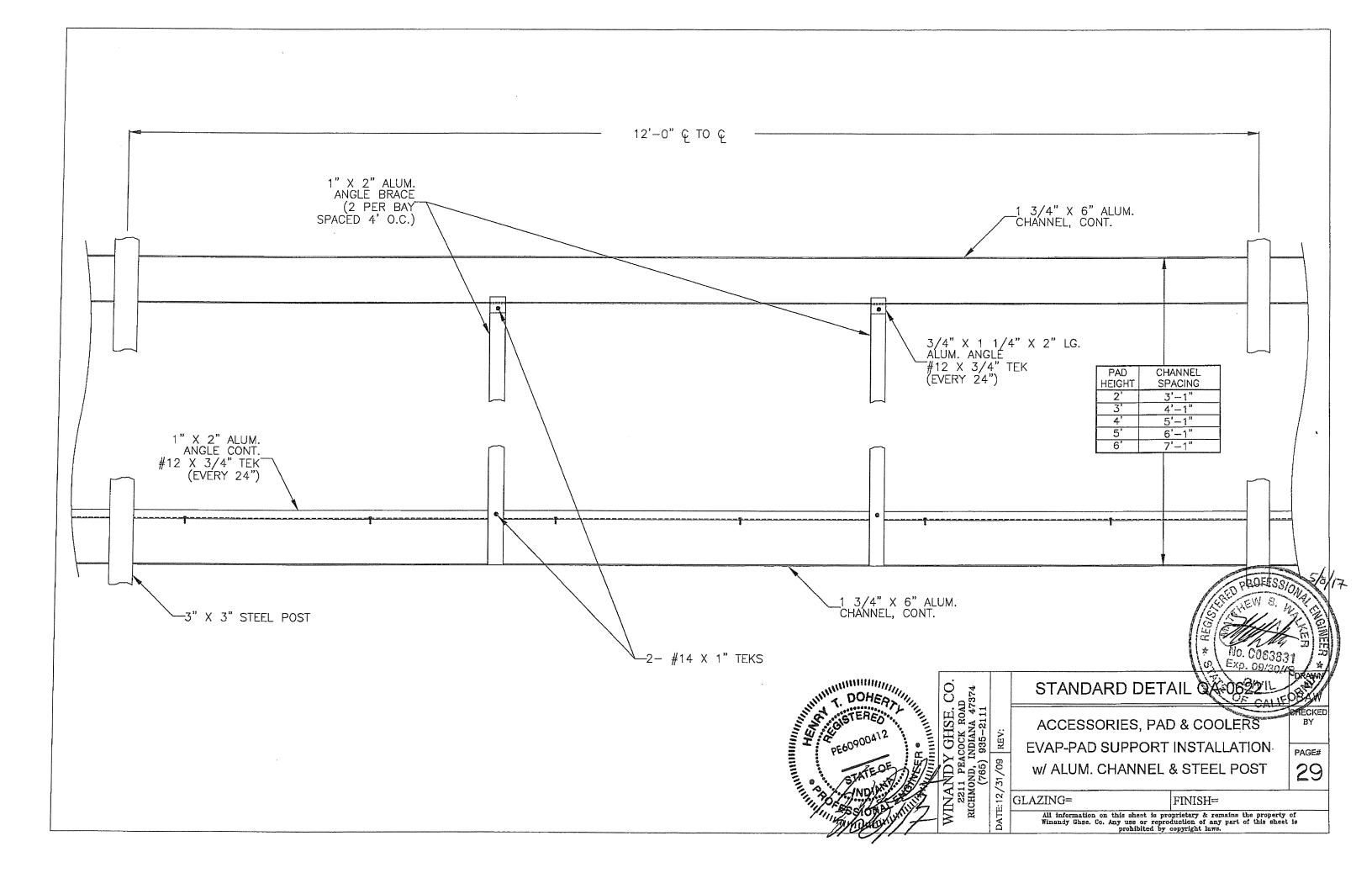


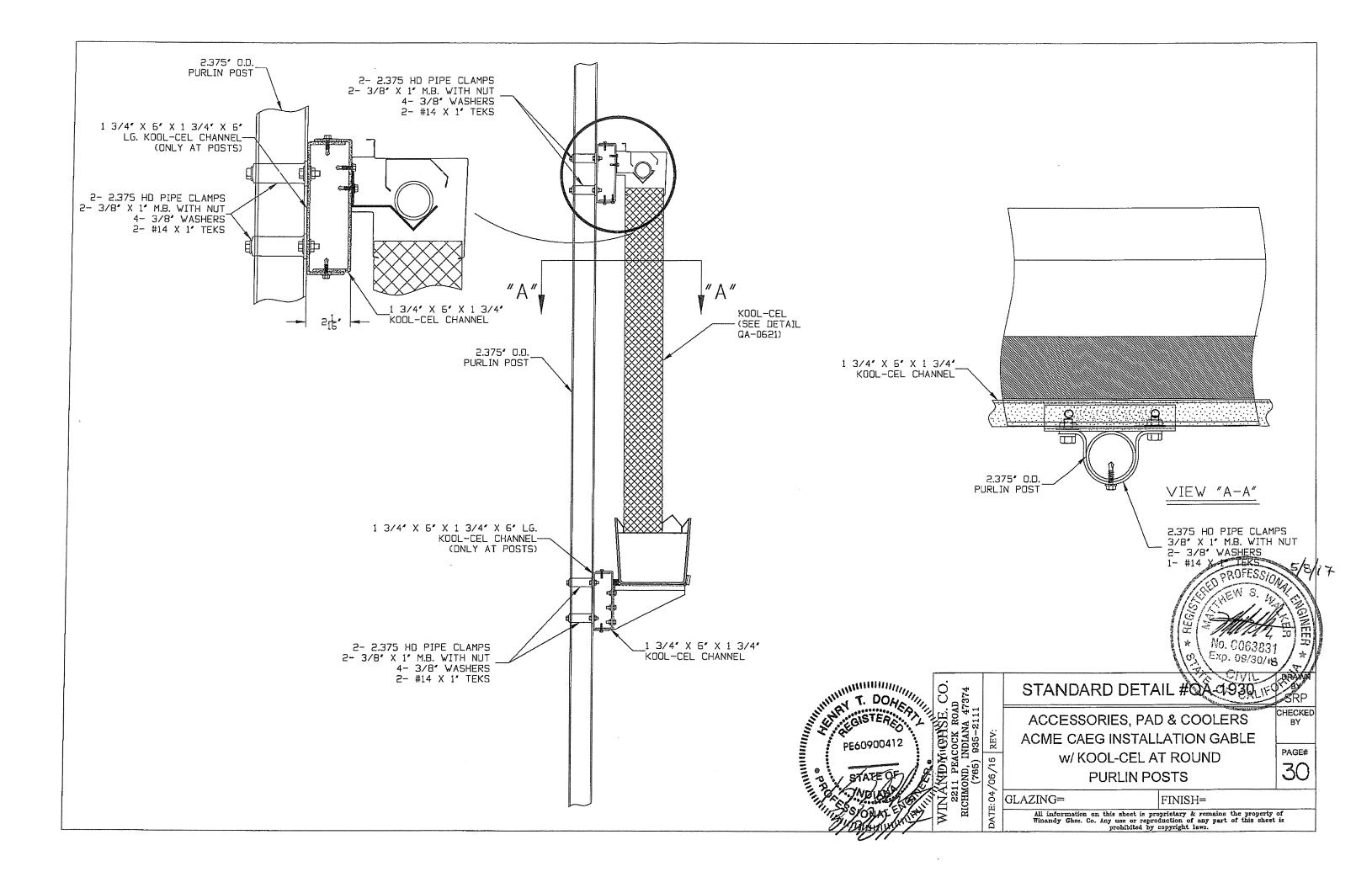


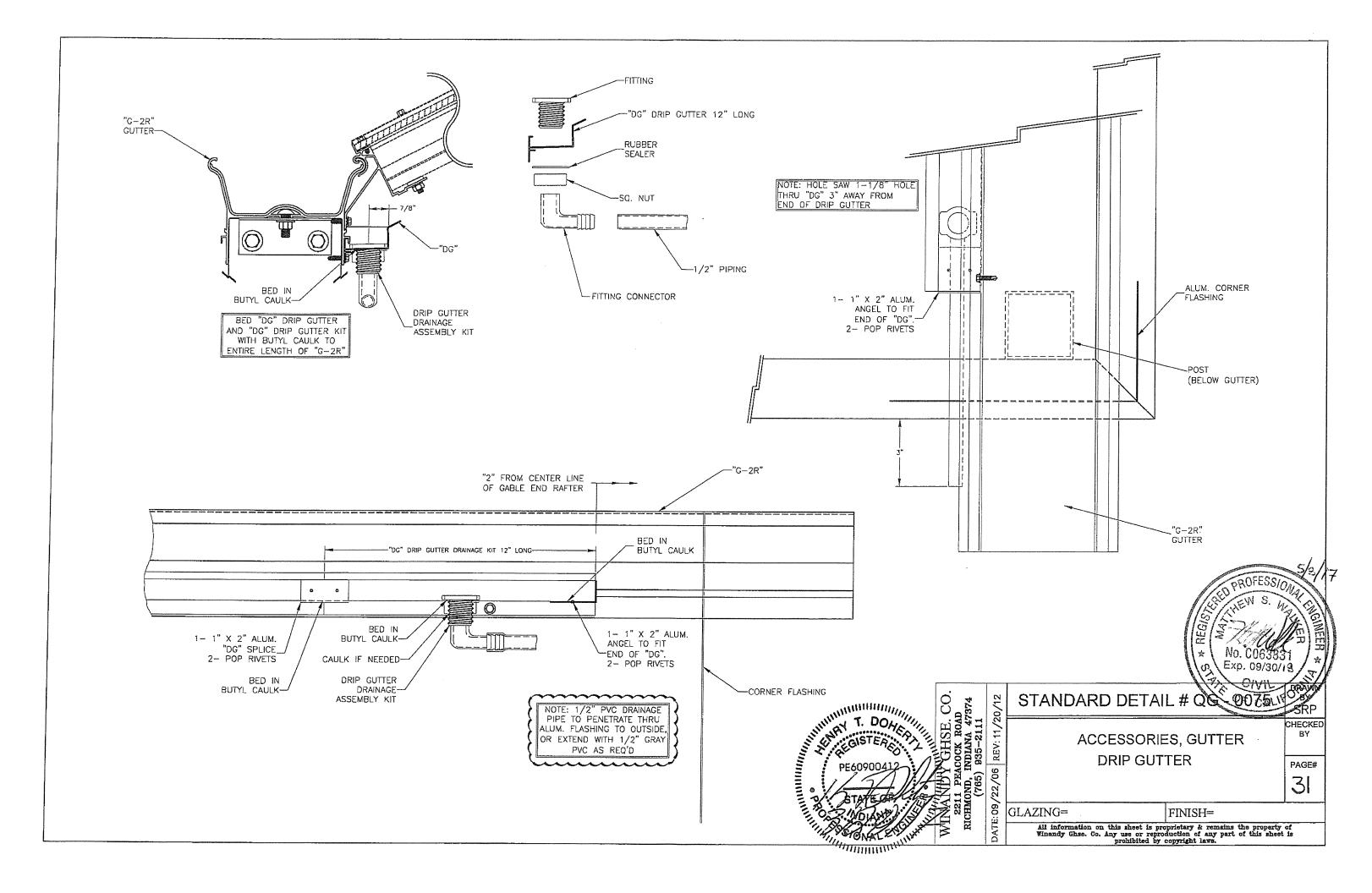


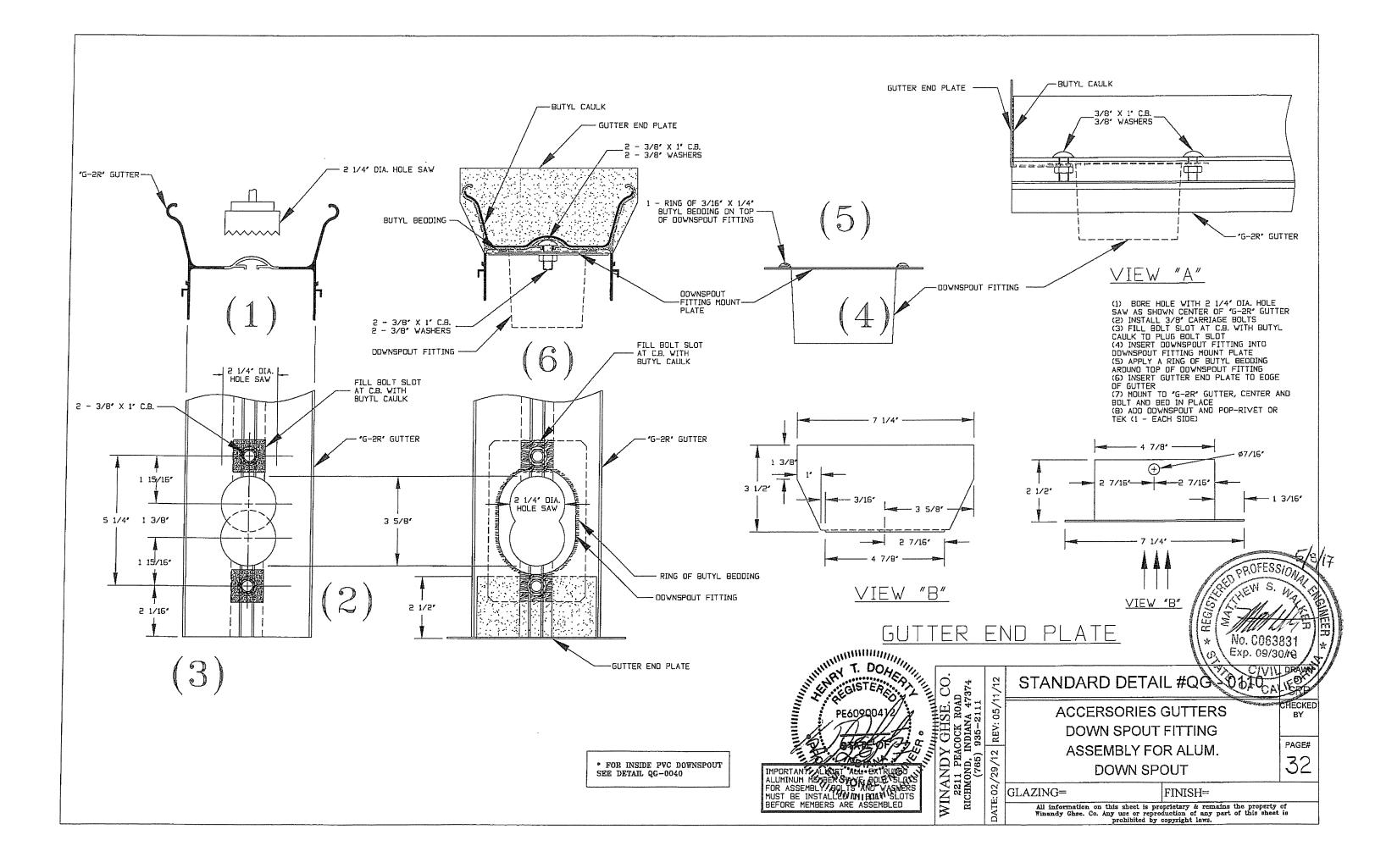


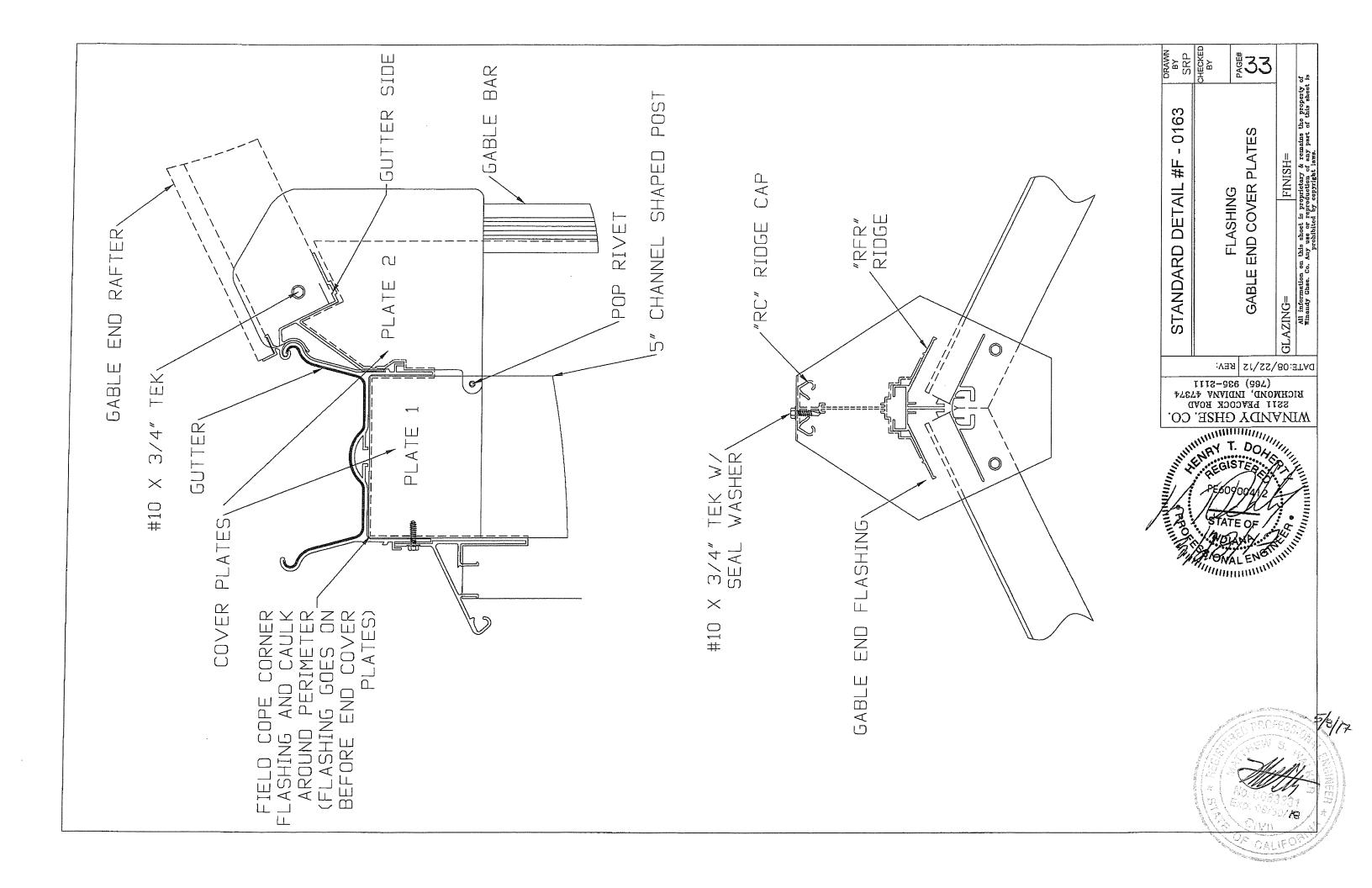


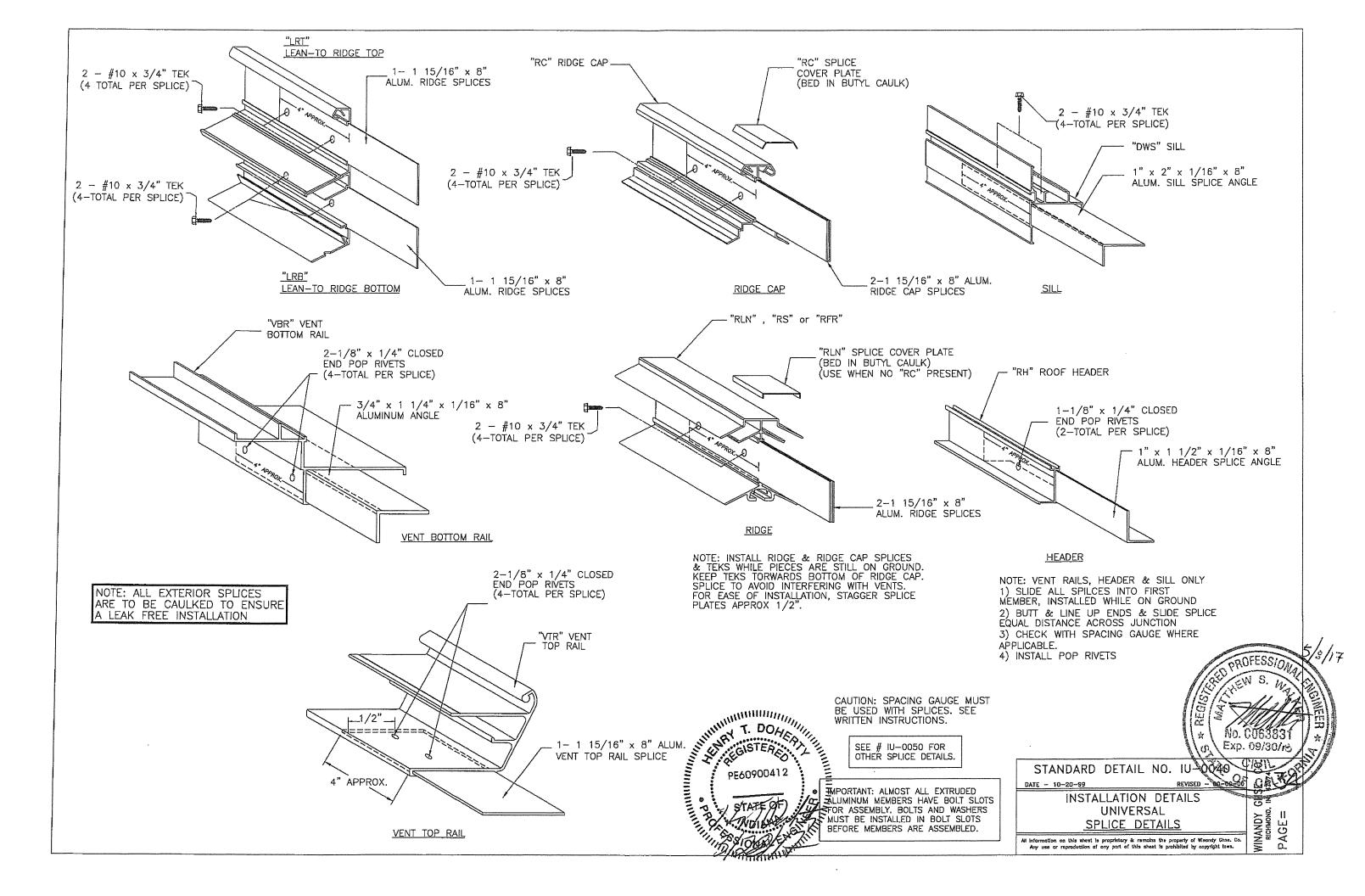


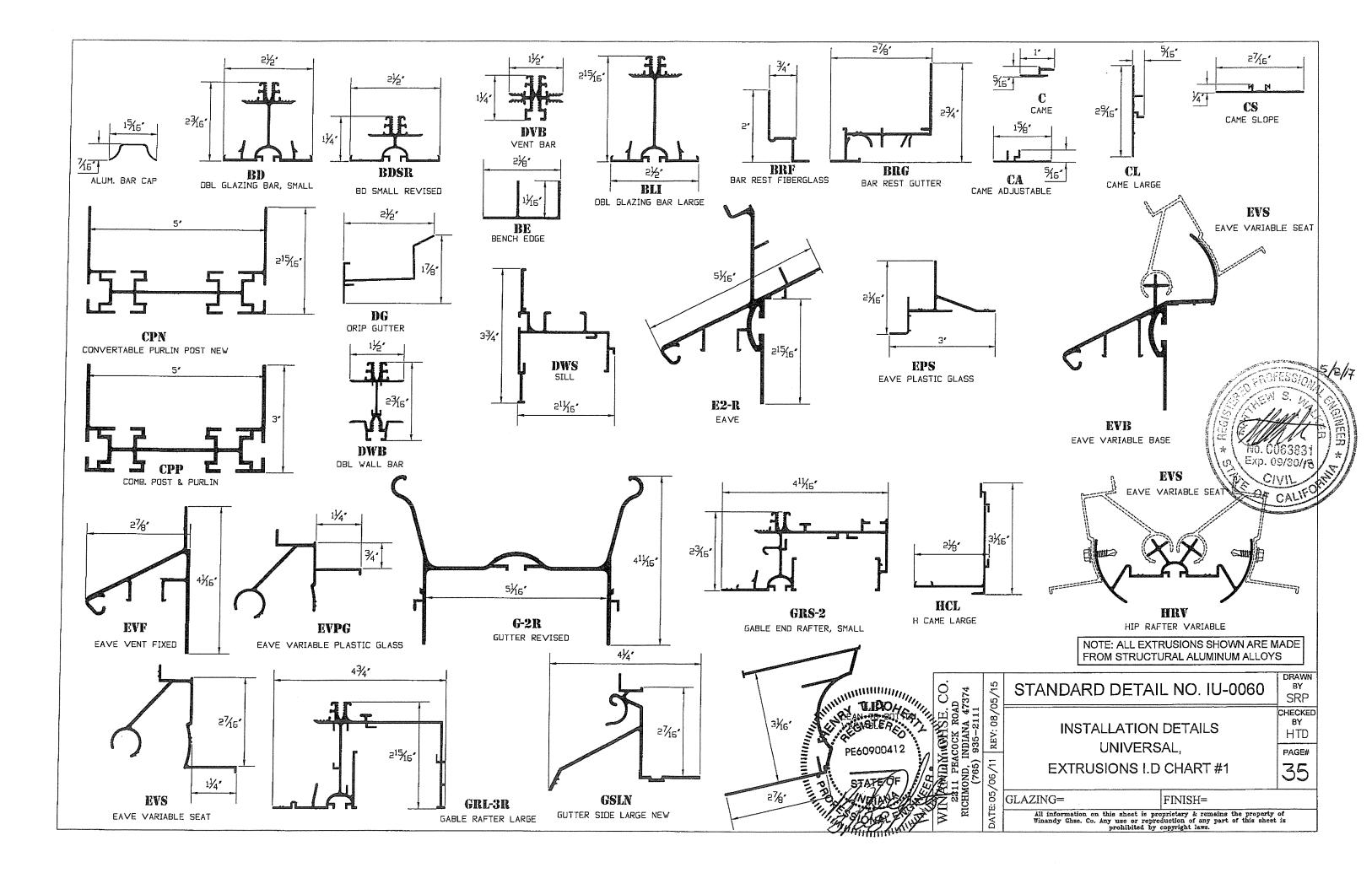


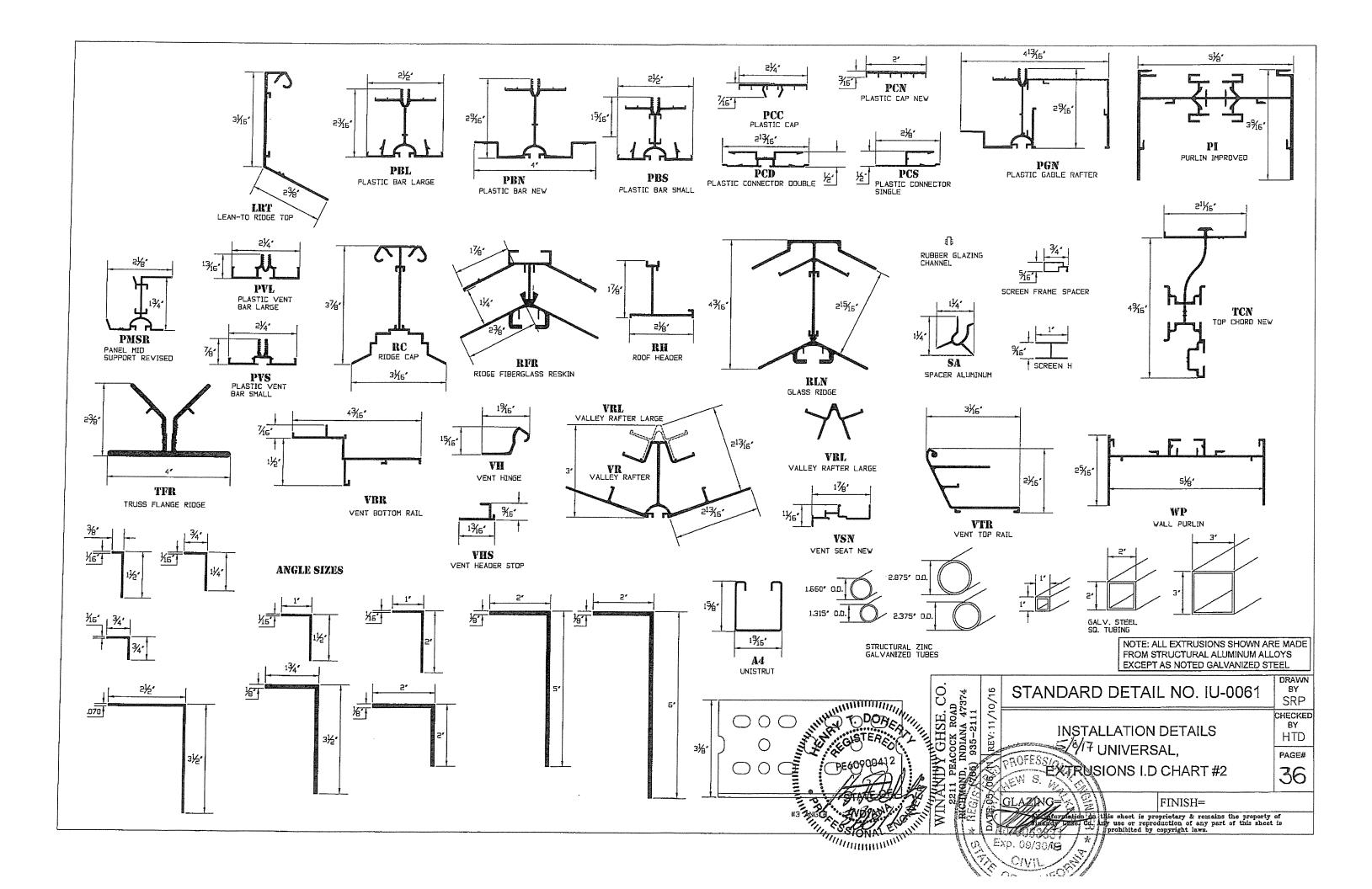


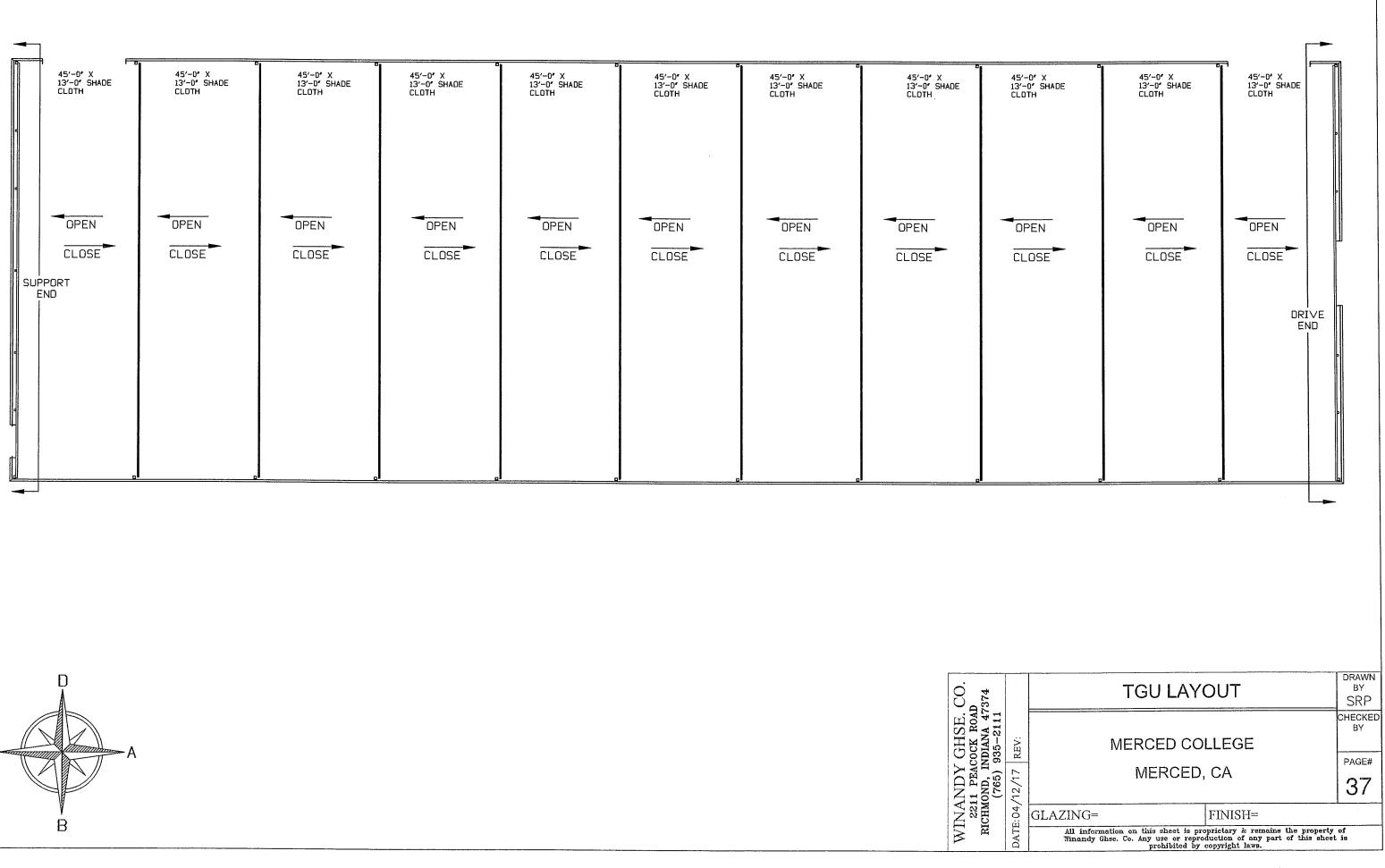


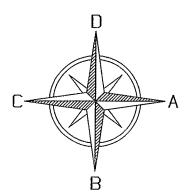


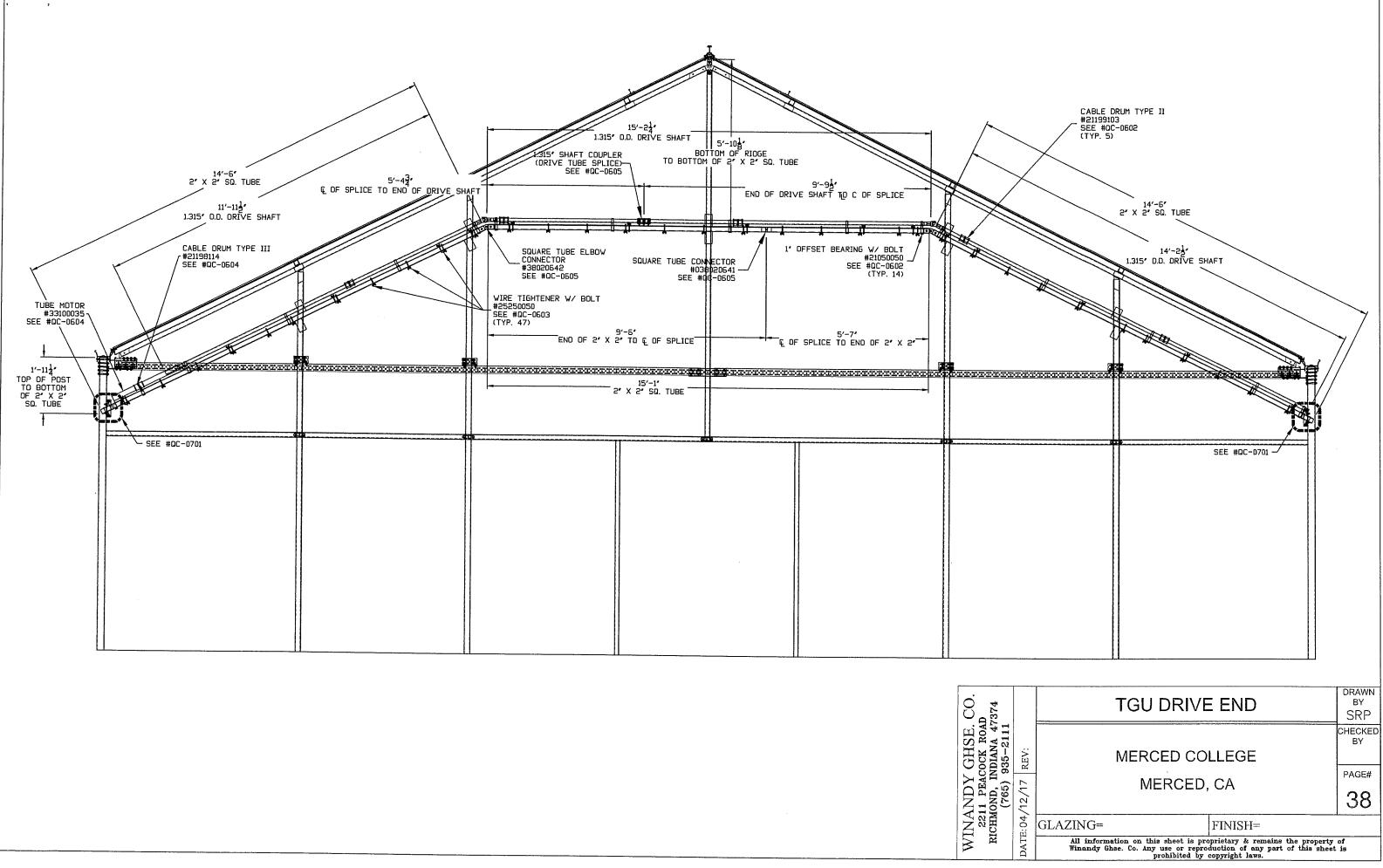


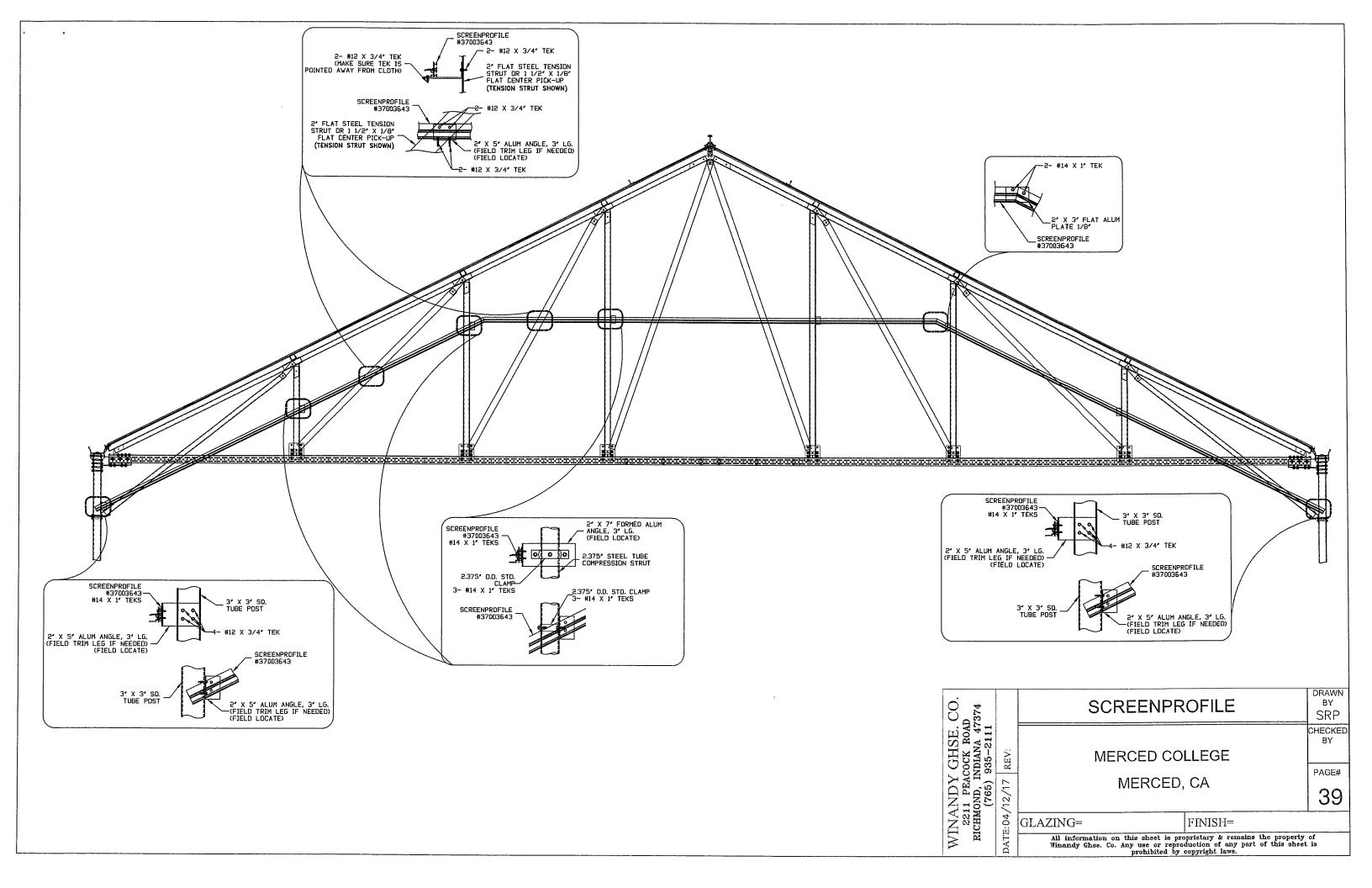


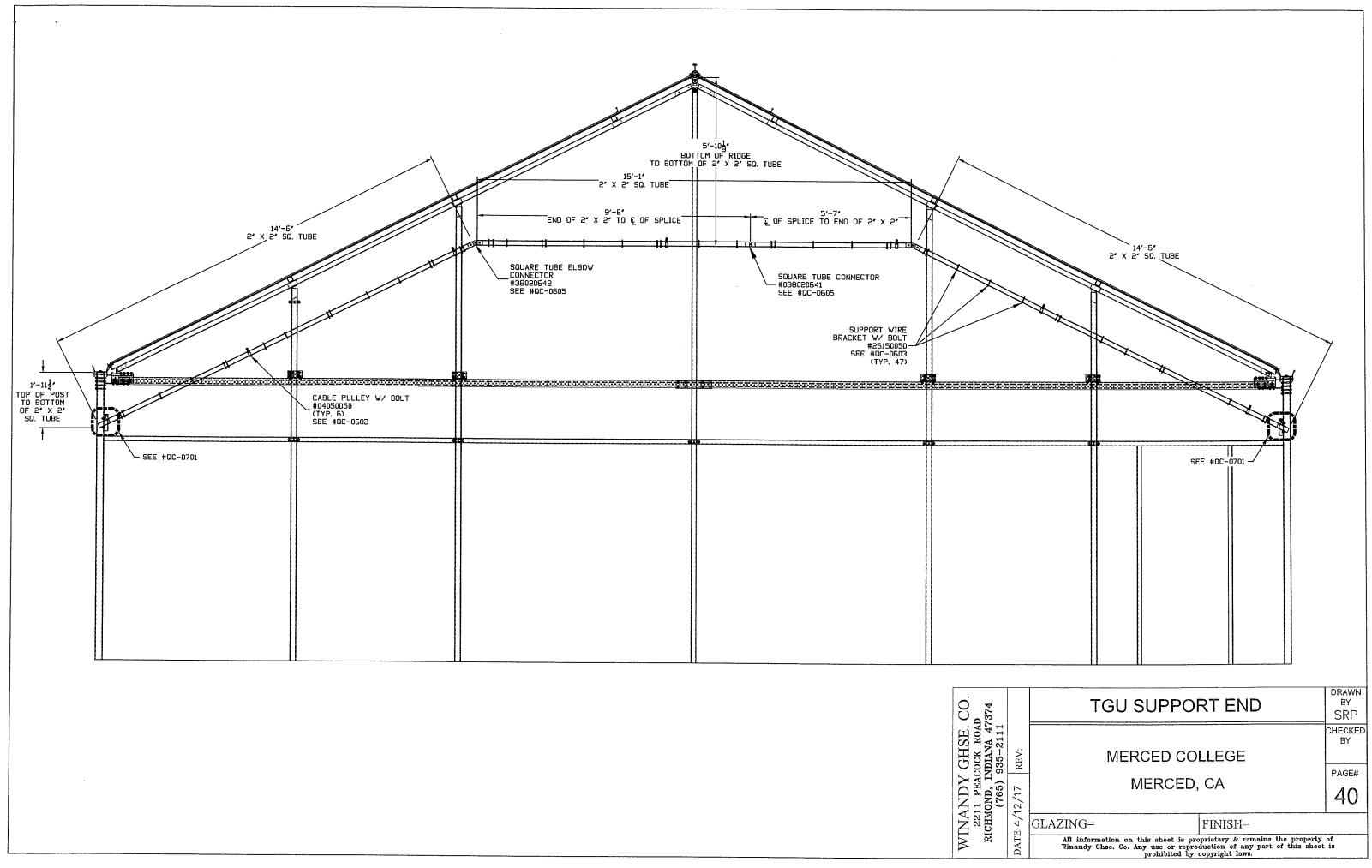


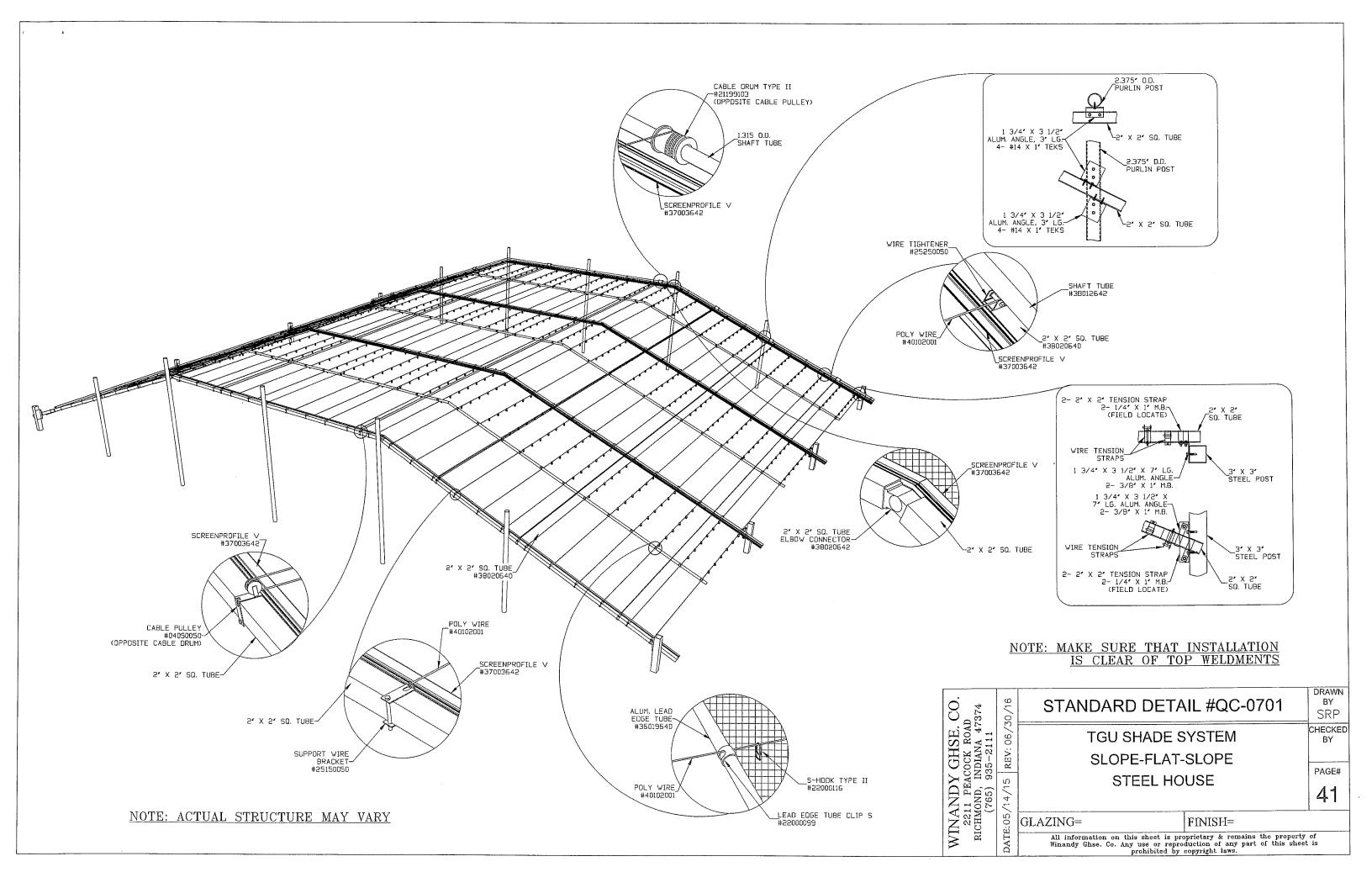




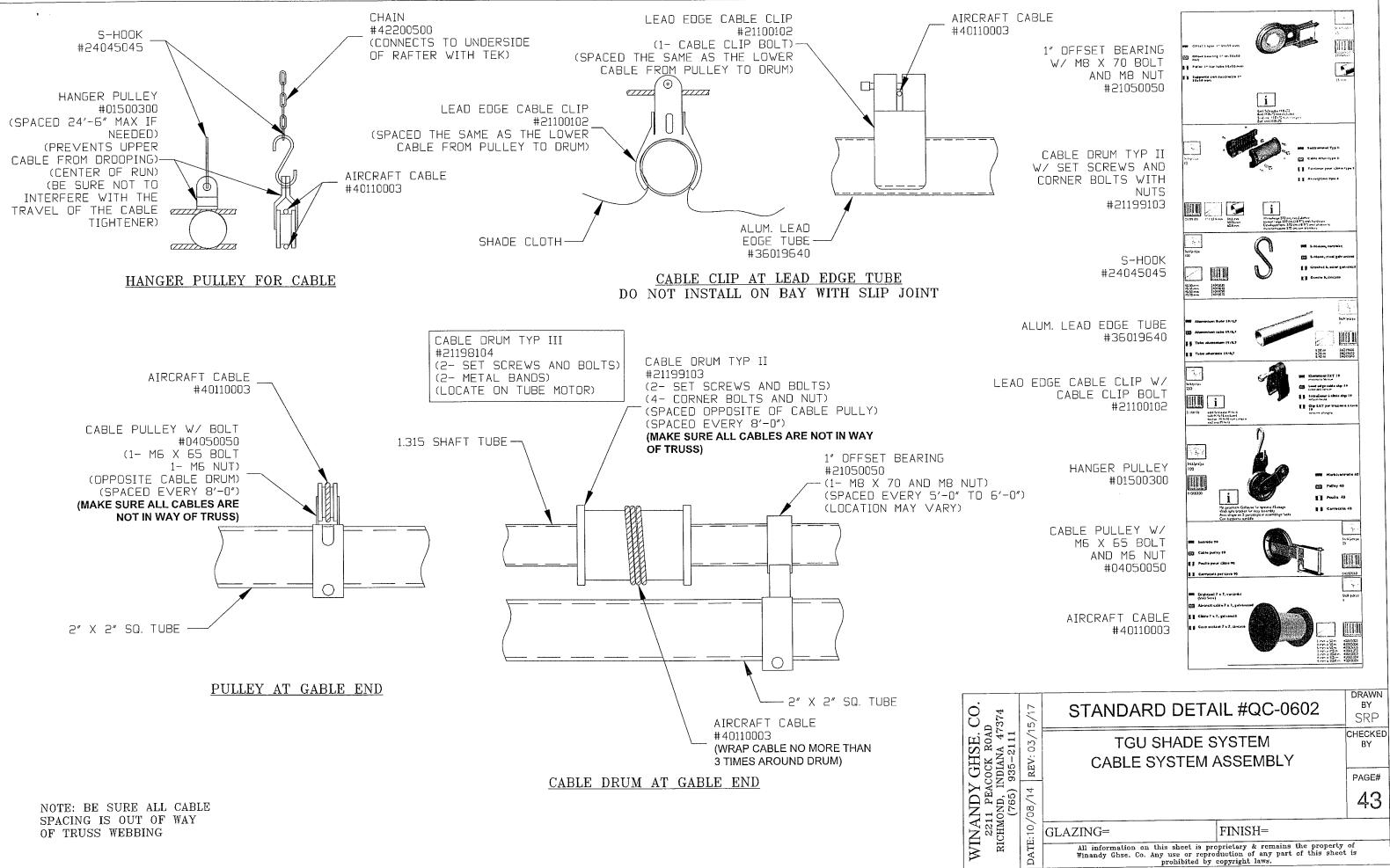


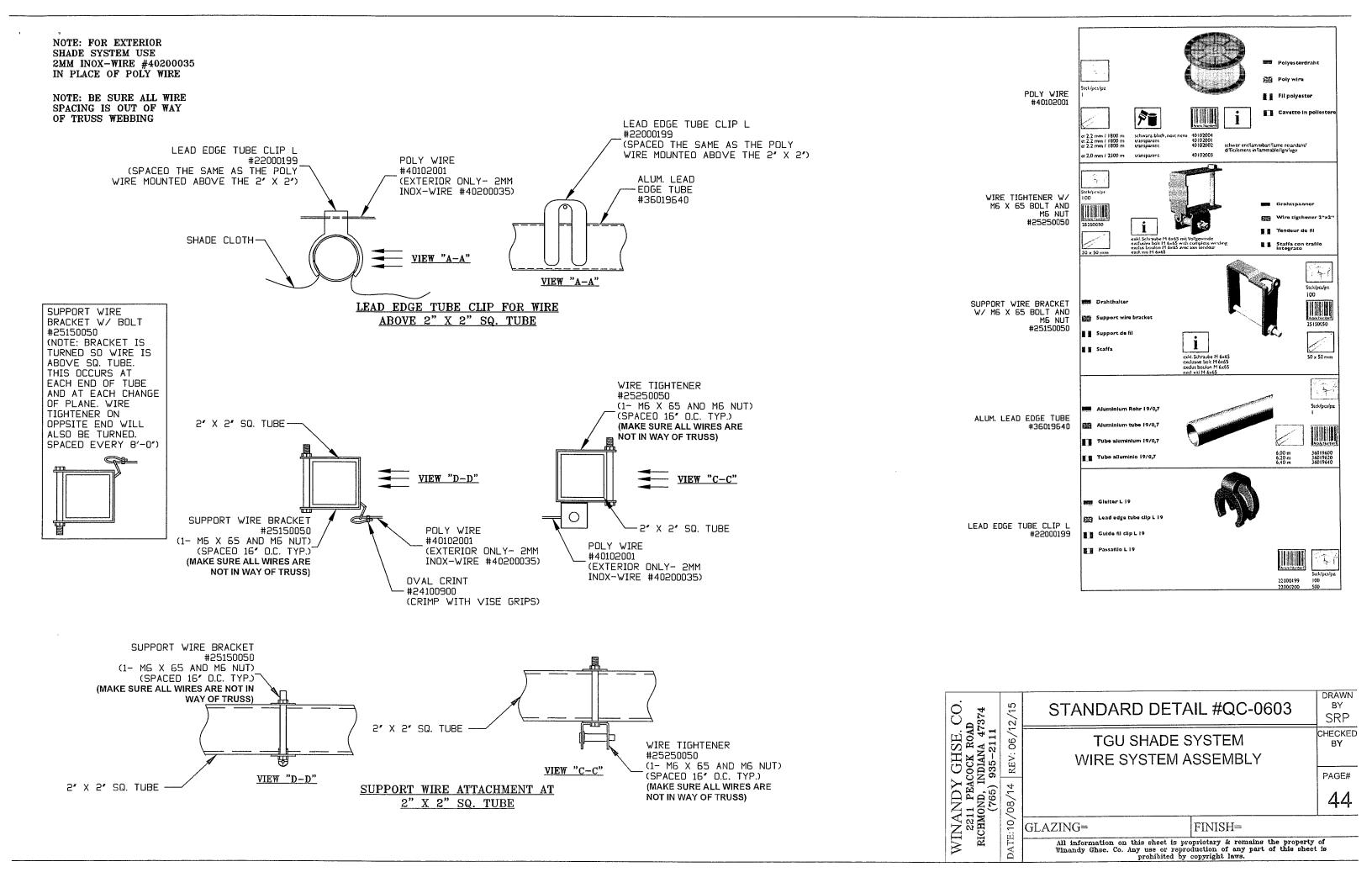


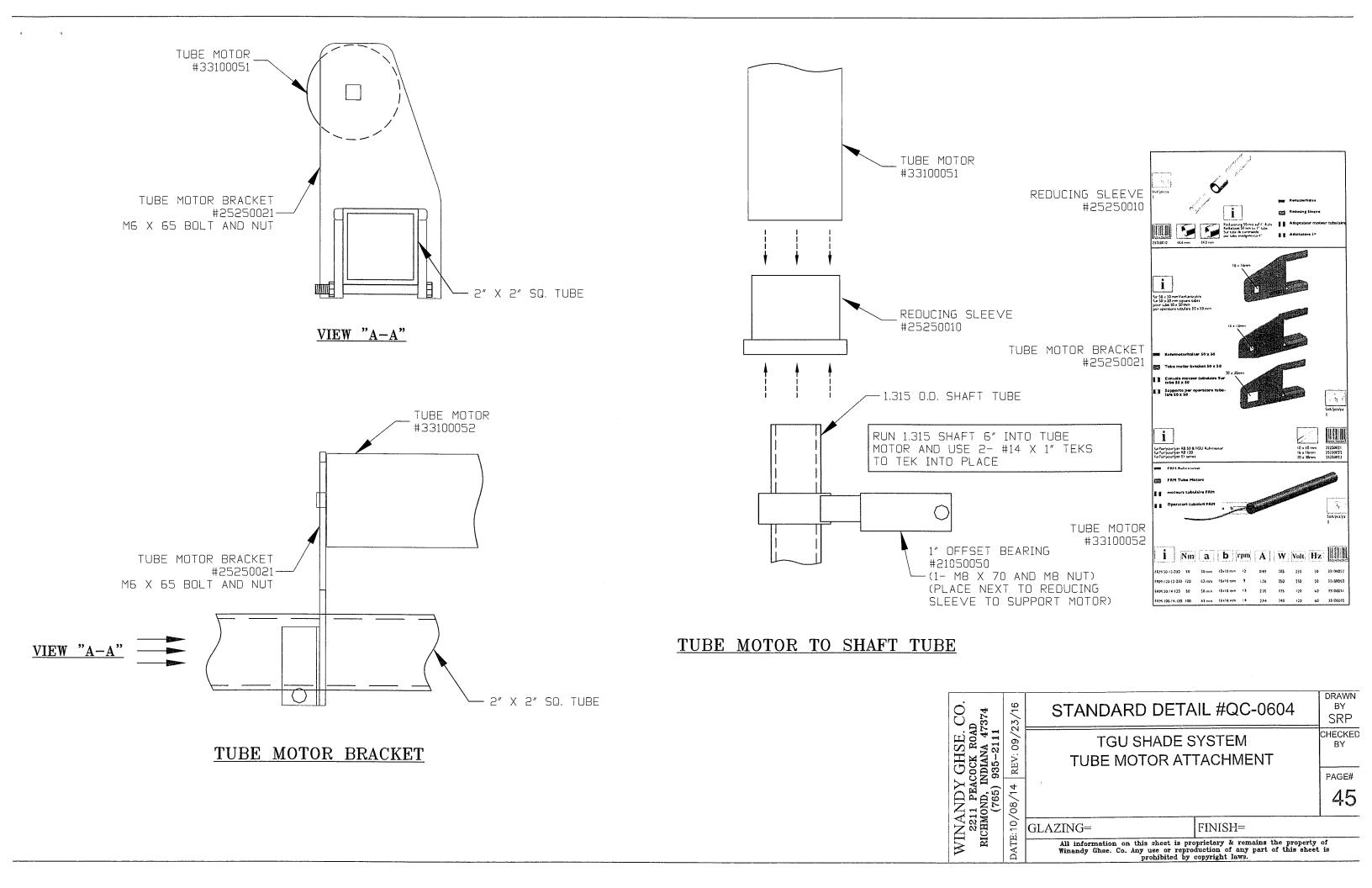


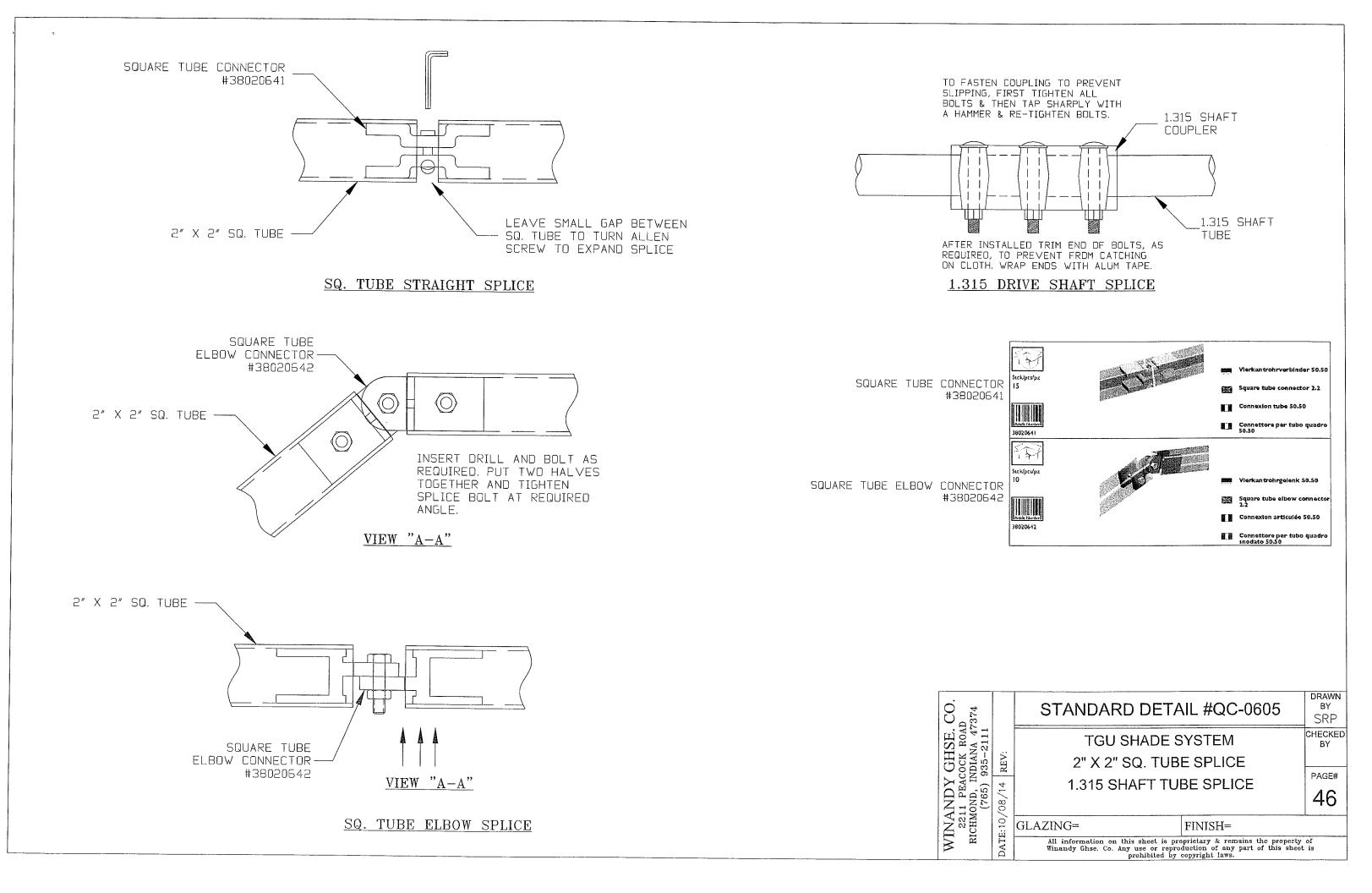


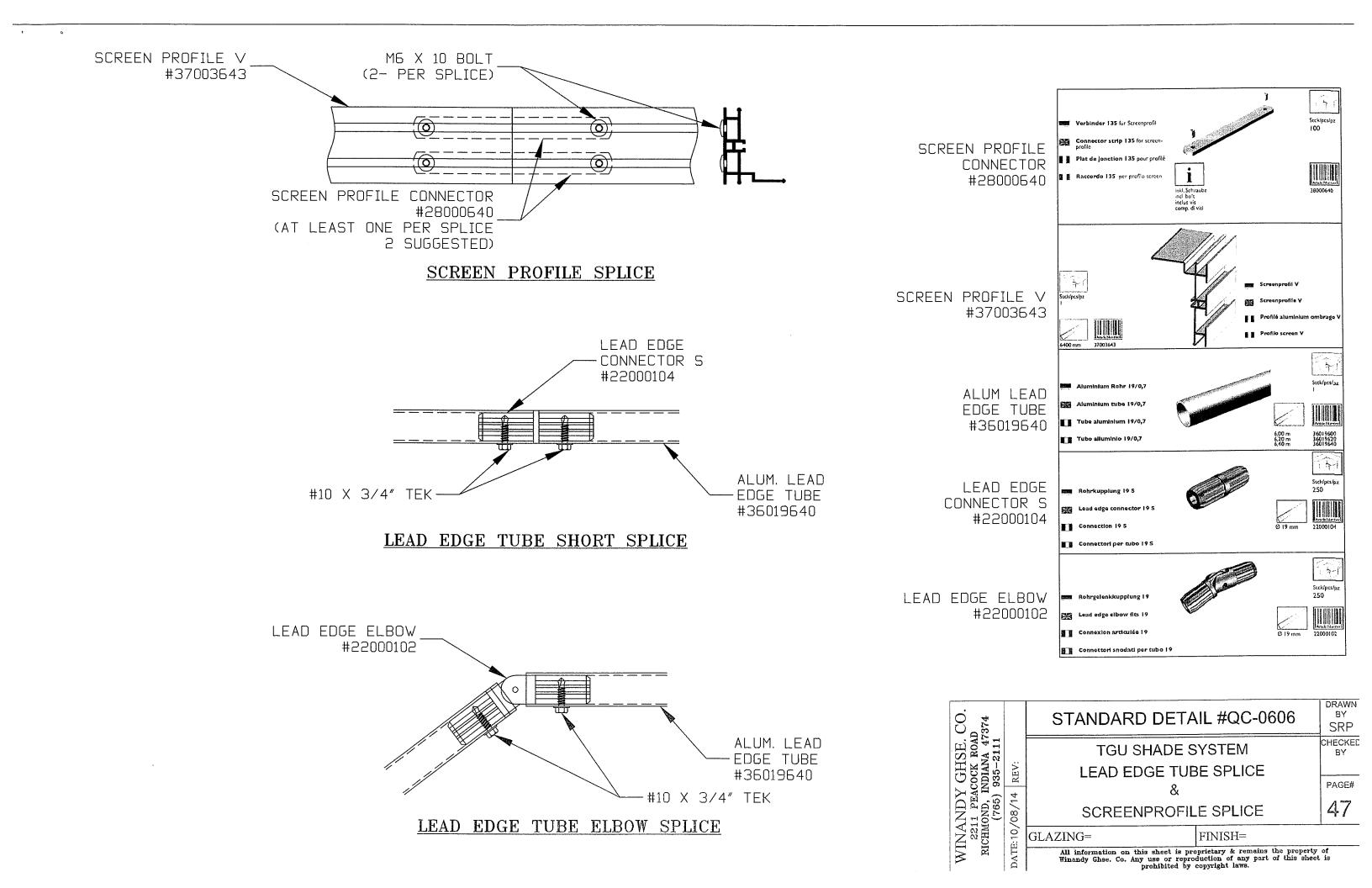
i

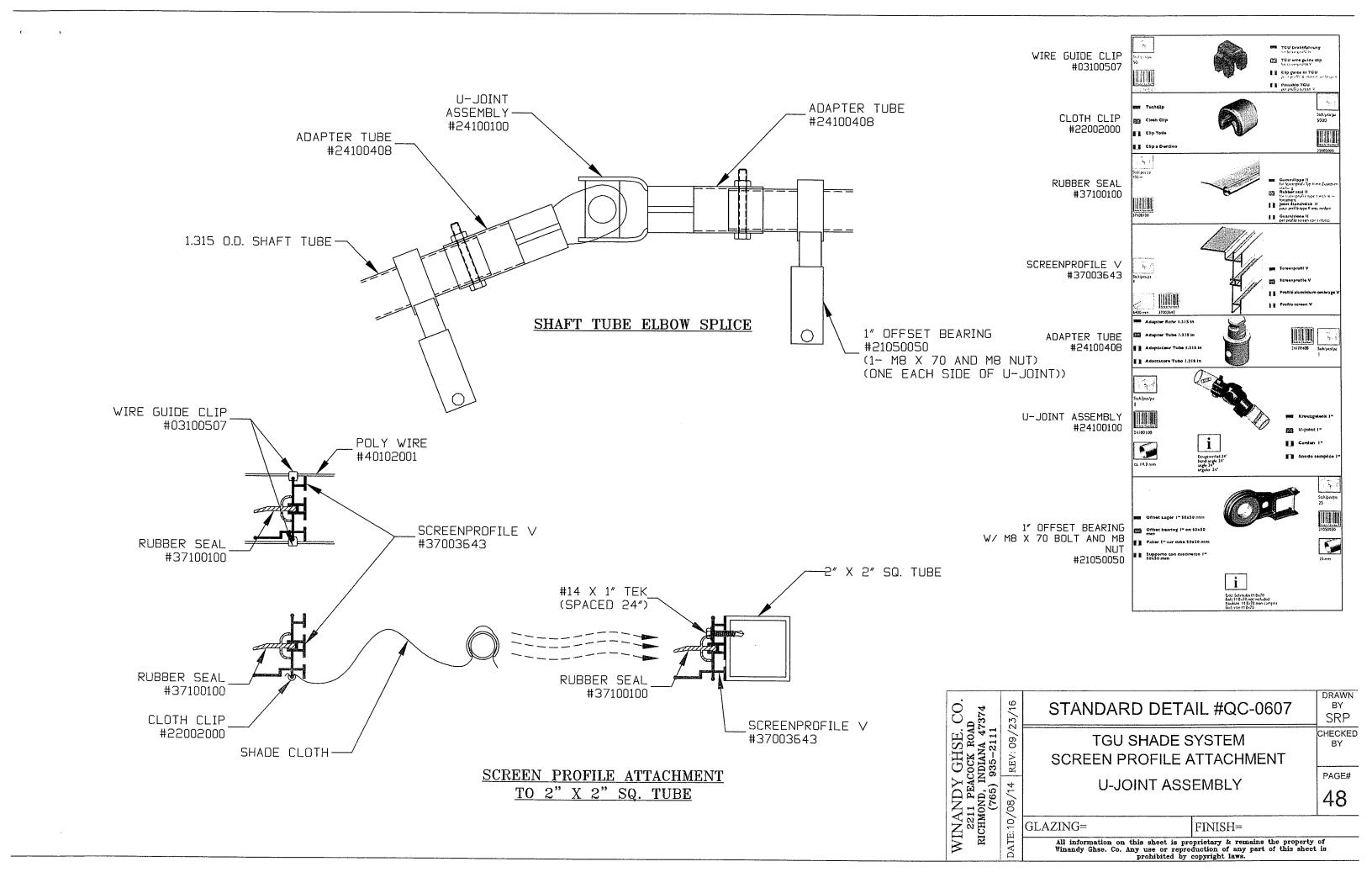


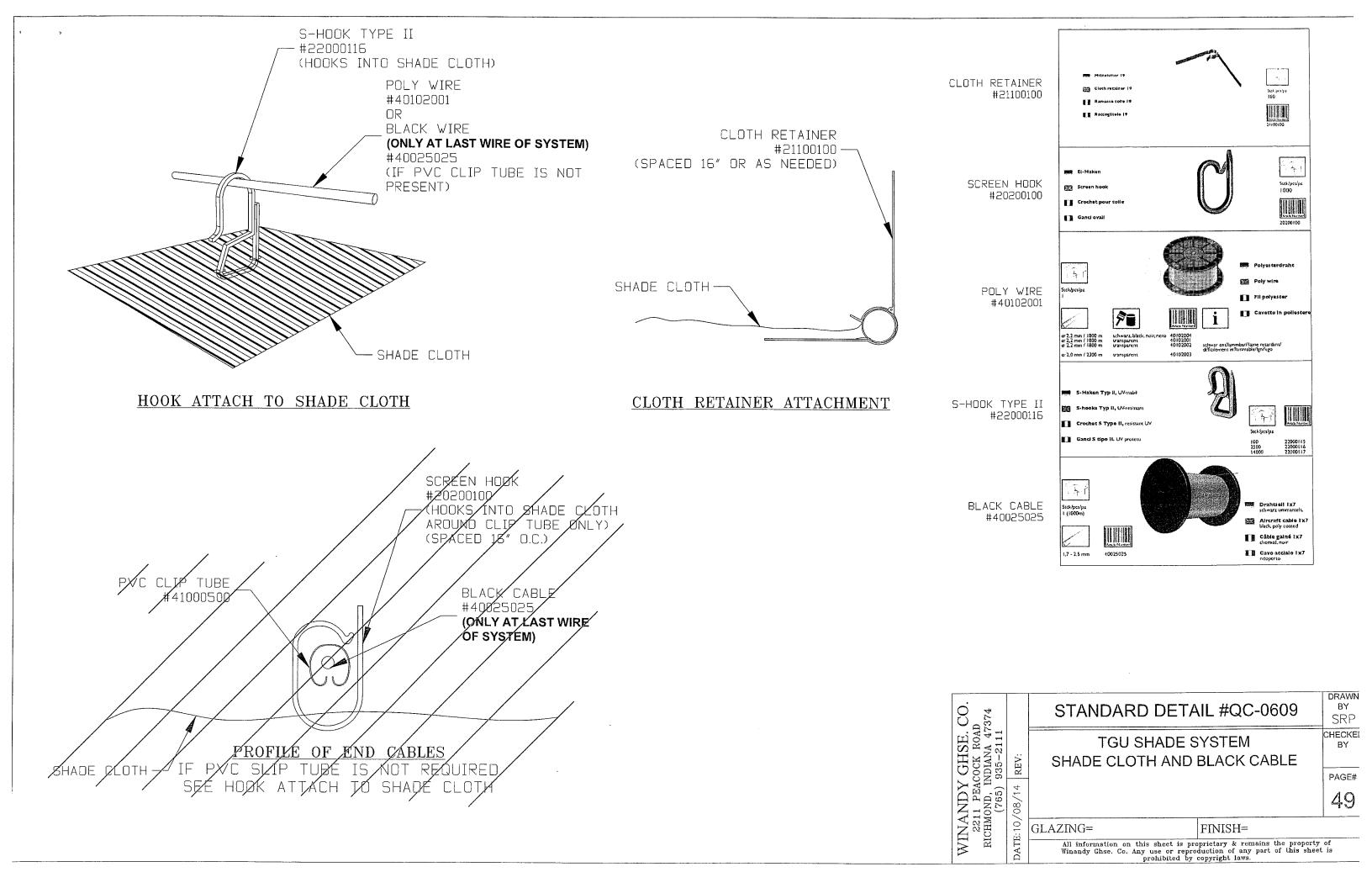


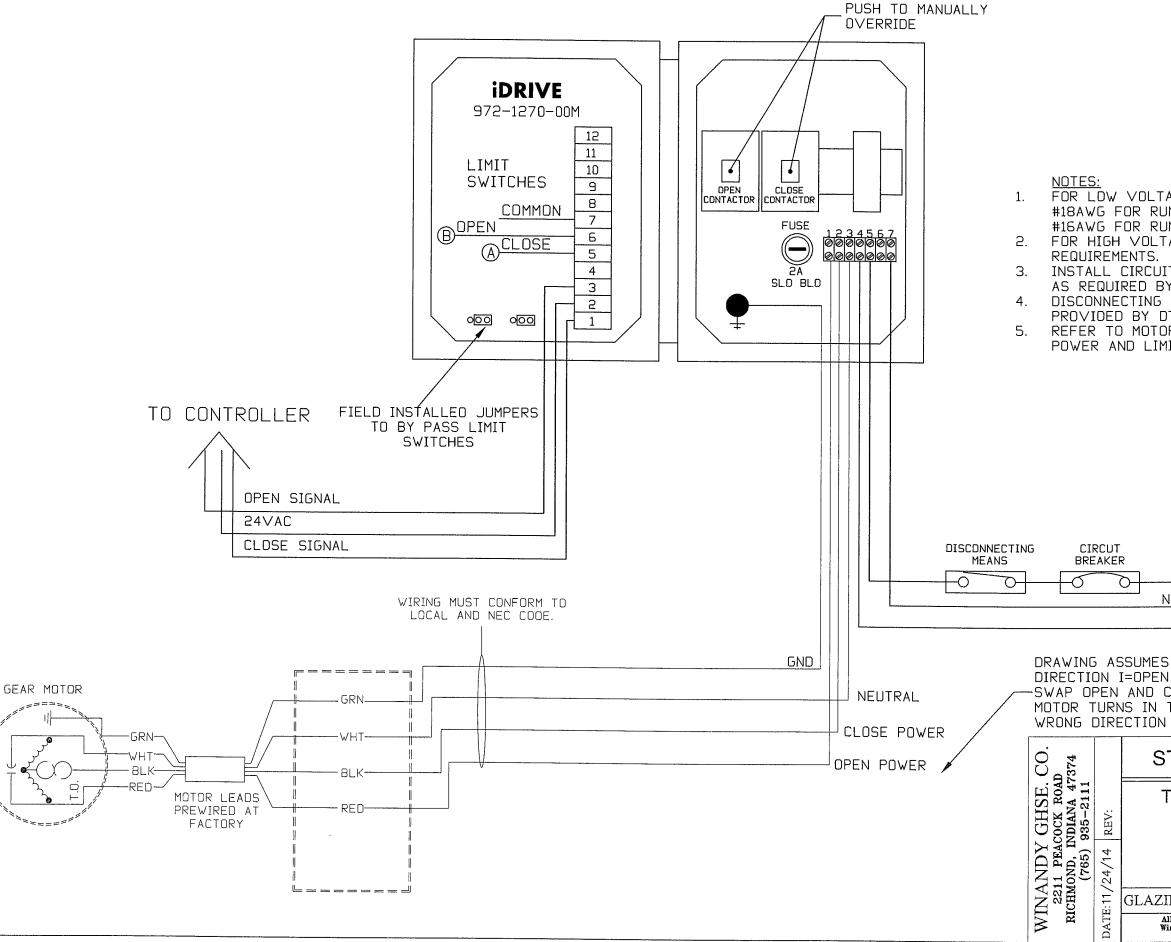




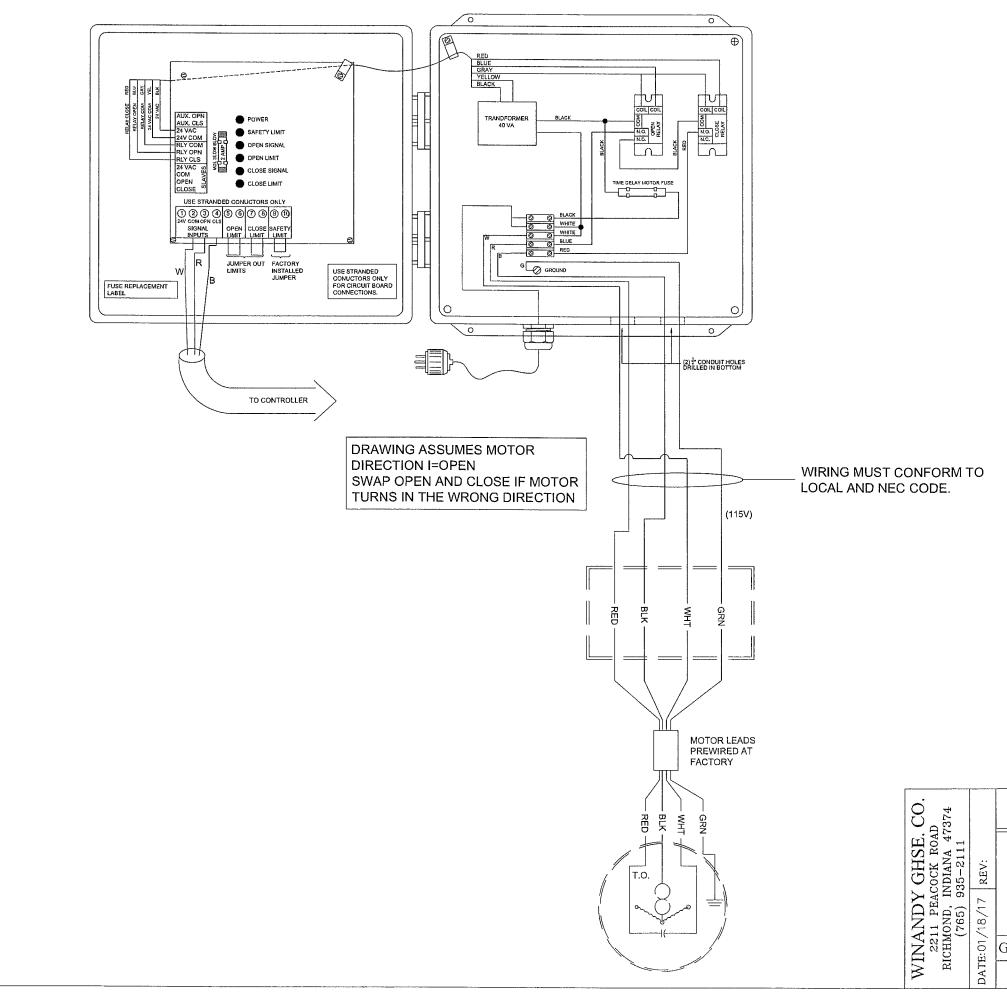








5

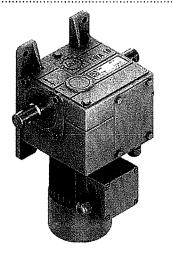

FOR LOW VOLTAGE CONNECTION USE STRANDED WIRES. #18AWG FOR RUNS LESS THAN 250FT. #16AWG FOR RUNS LESS THAN 750FT. 2. FOR HIGH VOLTAGE, USE WIRES PER NEC INSTALL CIRCUIT BREAKERS AND DISCONNECTING MEANS AS REQUIRED BY NEC STANDARDS. DISCONNECTING MEANS AND CIRCUIT BREAKERS PROVIDED BY DTHERS.

REFER TO MOTOR AND GEAR BOX (IF PRESENT) FOR POWER AND LIMIT CONNECTION DIAGRAM.

LINE
NEUTRAL
GROUND

DRAWING ASSUMES MOTOR -SWAP OPEN AND CLOSE IF MOTOR TURNS IN THE

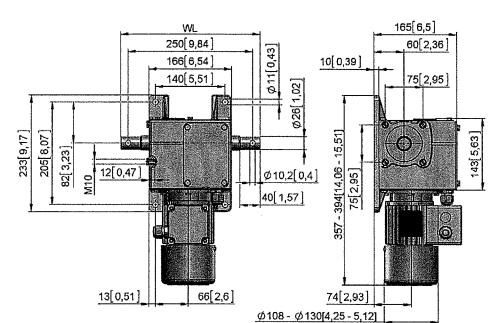
/24/14	All information on this sheet is pr Winandy Ghse. Co. Any use or repro prohibited by	oprietary & remains the property duction of any part of this sheet copyright laws.	of is
8:11,	GLAZING=	FINISH=	
/24/14	BOX		50
ъ			PAGE
REV:	W/ LINK 4 CC	NTROL	
	TGU CURTAIN SYS	TEM MOTOR	CHECKI BY
	STANDARD DETA	AIL #QC-0600	вү ТАМ
			DRAW


	STANDARD	DETAIL #EV-0332	drawn by SRP								
	TGU CUI	RTAIN MOTOR	CHECKEI BY								
	W/ MICROGROW CONTROL										
	BOX										
	W/ CIRCUIT BOARD										
GI	GLAZING= FINISH=										
	All information on this sheet is proprietary & remains the property of Winandy Ghse. Co. Any use or reproduction of any part of this sheet is prohibited by copyright laws.										

8 POWER DRIVES

CHAPTER 03 - EWA

CHAPTER 03 - EWA


EWA 10 // Power drive 50–90 Nm

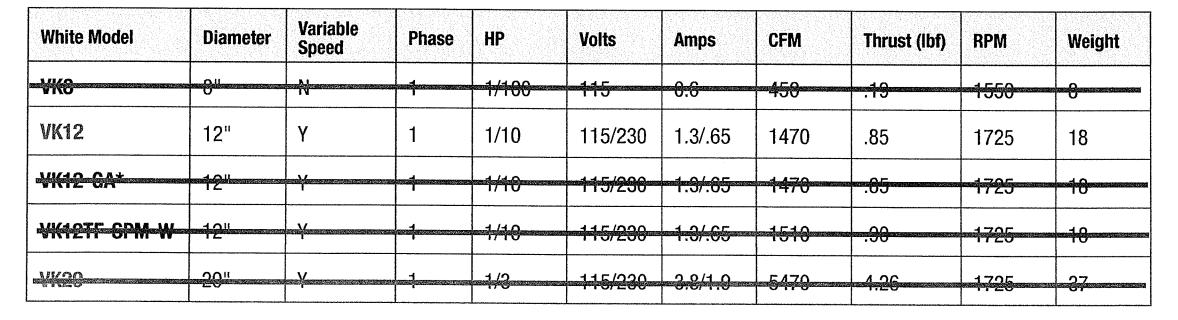
- ightarrow Extremely quiet, self-locking worm gear units with long service life, zero-maintenance.
- ightarrow Universal mounting with standard mounting at back or on side left (symmetrical).
- ightarrow Installed precision END 20 gear limit switch for 580 shaft revolutions (UL+CSA).
- → Quality motors with multi-range voltage (IEC 38) for 50 Hz (400 V 3~ // 230 V 1-) and 60 Hz (208 V 3- // 480 V 3- as well as 120 V 1- and 240 V 1- in UL+CSA). IP55, Th.Cl.F, S3-40 %.
- ightarrow A coil protection contact is integrated in all single-phase motors, so no separate motor protection switch is required. Turnkey with cable.
- ightarrow Round shaft We 06, 90 Nm version also available with hex shaft We 66.
- → On 60 Hz versions, END 20.40 auxiliary limit switch as standard!

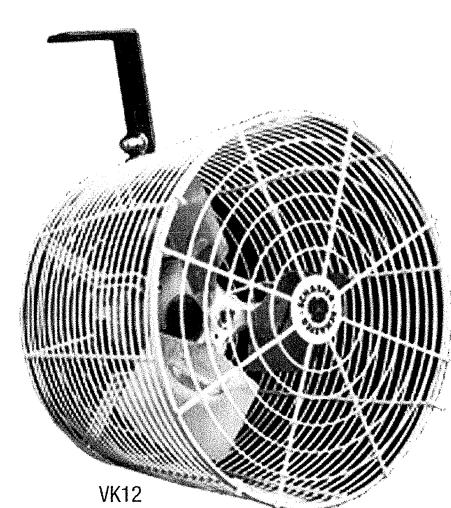
Options:

- \rightarrow END 20.40 auxiliary limit switch.
- \rightarrow PAR 06 position repeater.
- ightarrow Version A60 for use in the open air.

	Wellie							
Version	Туре по	Туре по	T HNml	u Thurs	P IRWI	j) JAJ	m Wei06	m Weige Bei
400 V 3~, 50 Hz							179 - Charlen Landbarry, 1999 - 1999	
EWA 10.0503	12210.0503.06		50	3,6	0,06	0,40	17,4	-
EWA 10.0505	12210.0505.06		50	5,6	0,11	0,45	16,0	-
EWA 10.0903	12210.0903.06	12210.0903.66	90	3,6	0,08	0,48	17,4	18,1
EWA 10.0905	12210.0905.06	12210.0905.66	90	5,6	0,13	0,53	16,0	16,7
230 V 1~, 50 Hz								
EWA 10.0503	12210.0503.0620		50	3,8	0,06	1,10	18,7	-
EWA 10.0505	12210.0505.0620	-	50	5,2	0,10	1,80	16,5	-
EWA 10.0903	12210.0903.0620	12210.0903.6620	90	3,8	0,09	1,20	18,7	19,4
EWA 10.0905	12210.0905.0620	12210.0905.6620	90	5,2	0,13	1,90	16,5	17,2
24 V DC, 50 Hz								
EWA 10.0505	12210.0505.0640	-	35	4,2	0,08	4,00	16,5	-
	We 06							
Version	Type no.	(Nm)	T 'in-Ibl	n (man)	: (۸)			m We 06 [kg]
120 V 1~, 60 Hz,	UL/CSA							
EWA 10.0503	12210.0503.0631	50	450	4,6	0,0	19	2,40	18,6
EWA 10.0903	12210.0903.0631	90	800	4,6	0,1	3	2,60	18,6
240 V 1~, 60 Hz,	UL/CSA							
EWA 10.0503	12210.0503.0636	50	450	4,6	0,0)9	1,28	21,5
EWA 10.0903					0,13		1 / 0	21,5
	12210.0903.0636	90	800	4,6	0,1	13	1,42	21,5
208 V 3~, 60 Hz,		90	800	4,6	0,	13	1,42	21,3
208 V 3~, 60 Hz, EWA 10.0503		90	450	4,6	0,		0,90	17,3
	UL/CSA					06		
EWA 10.0503	UL/CSA 12210.0503.0611 12210.0903.0611	50	450	4,6	0,0	06	0,90	17,3
EWA 10.0503 EWA 10.0903	UL/CSA 12210.0503.0611 12210.0903.0611	50	450	4,6	0,0	06 09	0,90	17,3

mm [inch] 🕂 💮


O LOCK BEWEGT // LOCK MOVES

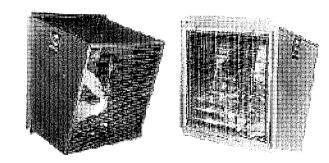

Versa-Kool® Deep Guard Circulation Fans

Reduce heat stress and improve air quality with Schaefer's deep guard circulation fans. Unrivaled in the industry, these fans are engineered to produce greater air movement and superior cooling with less noise. You don't hear them. You don't see them. You only feel them!

Features and Benefits

- Deep guard design for high airflow, low noise levels and safety •
- Matched high quality motors and blades for maximum efficiency
- Powder coated steel guards for increased durability and corrosion resistance
- Hot dipped galvanized guards on VK12-GA and VK20-GA models for even greater rust protection
- Powder coated steel mounting bracket and power cord included
- Wide variety of mounting options available for flexible and easy installation
- Variable speed controls available •
- Misting kits available for even greater cooling

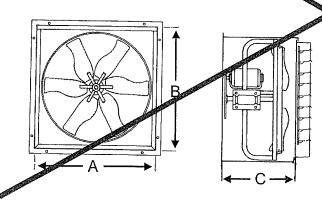
INDUSTRY STANDARD FOR **GREENHOUSE VENTILATION**

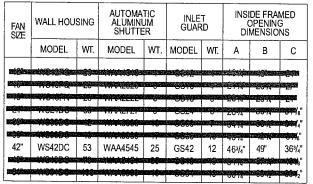


网络德国、铜鲁岛和美国、铜融县、 探测机器器的

• ,

- Constructed of heavy gauge galvanized steel or aluminum.
- For Model DC, DCA, FQ and FN Fans.
- ⁽⁵⁾ Energy Savings with inside shutter saves up to 3750 BTU/HR heat loss per fan.
- ^o High Flow Capacity shutter directs air to fan. Select fan at .05" sp. instead of .10".
- Weather Protected slant arrangement protects motor and drives from elements.
- Outside Mounting keeps equipment from blocking aisles.
- Assembled to fan for guick, easy field installation.
- Includes 1" x ½" guard on outlet side.

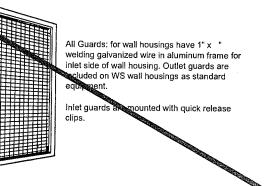



- Shutter and inlet guard held in place with quick release clips.
- \odot Wiring knockout included to allow all wiring connections for motor to be made inside the building. For fan application, see pages 4 and 5 for Windmaster[®] (DC or DCA) and page 8 for DynaMaster® (FQ and FN).

DUICK RELEASE CLIPS

el Mei Square Wall HO

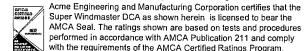
- Constructed on beavy gauge galvanized steel.
- ା For Model DC and
- Provides convenient mean to install fan and shutter.
- Outside Mounting keeps equipment from blocking aisles.
- Mounting Flanges for attaching to war and to attach shutter.
- Assembled to fan for quick, easy field insta



CAUTION! Guards must be installed when fan is within reach of personnel or within seven (7) feet of working level or when deemed advisable for safety.

FAN SIZE	WALL HOL	JSING	AUTOMA ALUMIN SHUTTE	UM	INLE GUAR		INS OPENI	DE FRAN	SIONS
	MODEL	WT.	MODEL	WT.	MODEL	WT.	Starffactor	В	с
24"	WB24DC	30	WAA2727	9	GD24	5	283/4"	28³/4"	24"
30"	WB30DC	36	WAA3333	13	6030	7	34¾"	343/4"	24"
36"	WB36DC	38	WAA3939	and the second	GD36	10	40¾"	40¾″	24"
42"	WB42DC	40	WAA45	25	GD42	12	46³/4"	463/4"	24"
48"	WB48DC	70	WW 45454	35	GD48	15	54¾"	543/4"	25"
54"	WB54DC	9800	WAA6060	40	GD54	18	60¾"	60¾"	29"

CAUTION rds must be installed when fan is within reach of personnel or 7) feet of working level or when deemed advisable for safety.



DCA SERIES (ALUMINUM)

- All aluminum construction
- Six-bladed propeller utilizing a cambered twist blade design with a unique dihedral tip for higher air flow capacities at less horsepower
- Non-overloading design maintains horsepower within catalog range of static pressure, resulting in lower motor load and reduced operating costs.
- Streamlined orifice insures higher air flow capacity.

Available mounted in either slant or square wall housing.

AMCA Seal. The ratings shown are based on tests and procedures performed in accordance with AMCA Publication 211 and comply with the requirements of the AMCA Certified Ratings Program.

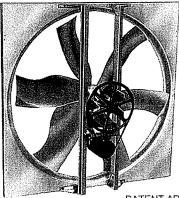
SEALED BEARINGS

- Prelubricated oversize ball bearings are double sealed, require no service.
- Improved, more efficient drive assembly and super-duty neoprene belts provide longer service life.

ENERGY EFFICIENT ENCLOSED MOTORS

- Heavy duty totally enclosed motors with shielded ball bearings are designed for continuous work load.
- Available in two speed.

Built-in thermal overload for low-line voltage protection on all single phase motors


	nisten		· · · · · · · · · · · · · · · · · · ·			CERTI		VS. STATI	C PRESSU	RE (INCHES	SWG)				·			MAX
FAN	HP	RPM		.000"			.050"			.100*	an a		.125"			.150"		STATI
			CFM	*BHP	CW	CFM	*BHP	C/W	CFM	*BHP	C/W	CFM	*BHP	C/W	CFM	*BHP	CW	PRESSU
on us nas		ULL	4000		10.0	4000	.20		1100	.2.0	12.0	0000				aja en vena	物理の名言での	
	191												e izve në konsol					
	12	OL0	0100		To.o		nia ny sisana										an ang an	
																ana dia m		
							an filme					0015				and films		(
	14	070	0010		Solution of the second second	- 0000			0000									
	13						an a shi ka a shi ka shi k				والمعلي المحافظ					त्र सम्बद्ध हिंद्र स्था		
					a an											an an Gras		
01000 20	16	040	0100			0000		10.0	1010		12-11	1210					2019 546-11-3	
							anan Alanan					0258	- 1 00				and a constant	
	1		10010	01		0000	.02		0,500		010				ana dinakan			
571007	13	401	10000	.0 <u>2</u>	2.0.0	3645	A REAL PROPERTY.	100.15	6000	.00	20.0	0000	.00	LVIL				
				a de la companya de l			un filmen									erse Vârees	a second de la seconda de l	10000
		inin ang panin									an in Salara		ana da ana	anaide San				
			00000		des Qigens						ionnių įrinnos	Markey and Park						10.000
84424400			CONTRACTOR OF CONTRACTOR											Curradi Amari	00/2002-000	as deles ferrar		को <u>क</u> र कहे।
0/10004		00	14000		78.0		1.00						ang Kéléng	CONTRACTOR OF CONTRACTOR	TOOLO	nie stoene		a second
		000	17000		20.0		and the second	a an							HOME STREET			
		000	10000	<u>.40</u>	20.0	12-100	and the second		P P P P O O P	.01		CE CE CO		10:0	COPUS I	and the second		
0/11211	14	CONCERNMENT OF	107-10	.03	20.5	10540		19.9	1 40100		11.0	TTILU	ACH OL	10.0		and States		
Adabbis BOm		an a lain an												nanstalleren				
CA42J‡	1		18295	1.11	17.1	17620	1.14	16,1	16980	1.19	14.8	16575	1.20	14.7	16125	1.20	14.0	.2
										alexand density	สมสมัติ ส่งหล				ant Office			
			anti ORfere		South Andrews			Second Conference	den til Geblen		ann Cârtean	10192			al digates and a subject of the			
Rest Vielansen		oran di denace	No. No.				(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		in the sec			10000Eilfean				anna Maria		
			uorite (historia) Anti-		anai (genera								an an the state of t	and Contract		en de la composition		
97400±		302	21300	.90	22,1	20440	1.01	21.0	13420	1.05	15.2	10050	1.00	10.3	10150	1.00		
-0/(37-40 <u>1</u>			23510	1.15	20.1	29010	1.17	21.2	21320	1007.10		20130		10.0	13000			
ailable w									(CAUTION	Guard	is are str	ongly rea	comment	led whe	n the fan	is insta	lied w
normanc	e show	<u>n is insta</u>	llation of	type A-F le drive la	ree inlet.	Free out	let.		S	even (7) complying	reet of	the floor,	working	level or	within re	ach of p	rsonne	я. ей

Performance ratings do not include the effects of appurtenances in the airstream. † These models feature a four-bladed propeller

<u>CFM per Watt does not include drive losses.</u> C/W ratings are not licensed to bear the AMCA seal.

WARNING! DO NOT use in HAZARDOUS ENVIRONMENTS where fan's electrical system could provide ignition to combustible or flammable materials unless unit is specifically built for hazardous environments.

6

PATENT APPLIED FOR

MOTOR NOTES

- 1. All single speed single phase motors are dual voltage (115/230) except 1/4 horsepower
- 2. All ¼ horsepower single phase motors are single voltage (115 or 230).
- З. Two-speed motors are single voltage (115 or 230) and not available in 11/2 horsepower
- 4. Low speed capacity of two speed fans is approximately one half of maximum
- 5. All three phase motors are triple voltage (200-230/460).

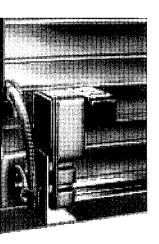
OSHA Codes and obtain a quotation.

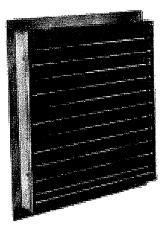
BELT TIGHTENERS FOR DCA SERIES: Keep fan performance to the design level, maintaining efficiency

Not available for DCA24 and RCA24 models.

ACME ENGINEERING & MANUFACTURING CORP.

- [®]Corrosion resistant heavy gauge aluminum frame.
- Precision counterbalanced aluminum blades open easier, wider to permit higher fan capacity.
- ®Nylon bearings throughout are corrosion proof to help prevent sticking. Suitable for dusty or humid applications.
- Stainless steel hinge pins will not rust, insure easy positive blade action.
- All shutter blades are reinforced with polished galvanized steel rods, and equipped with double tie-rods.
- Automatic Used with exhaust fans; opens automatically when fan is on, closes automatically when fan is off.

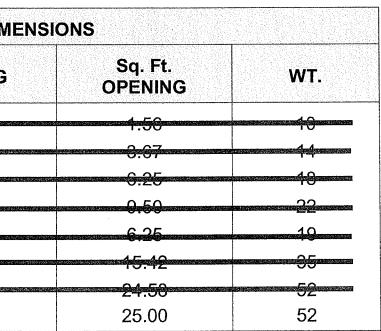

(See fan selection for shutter sizes)

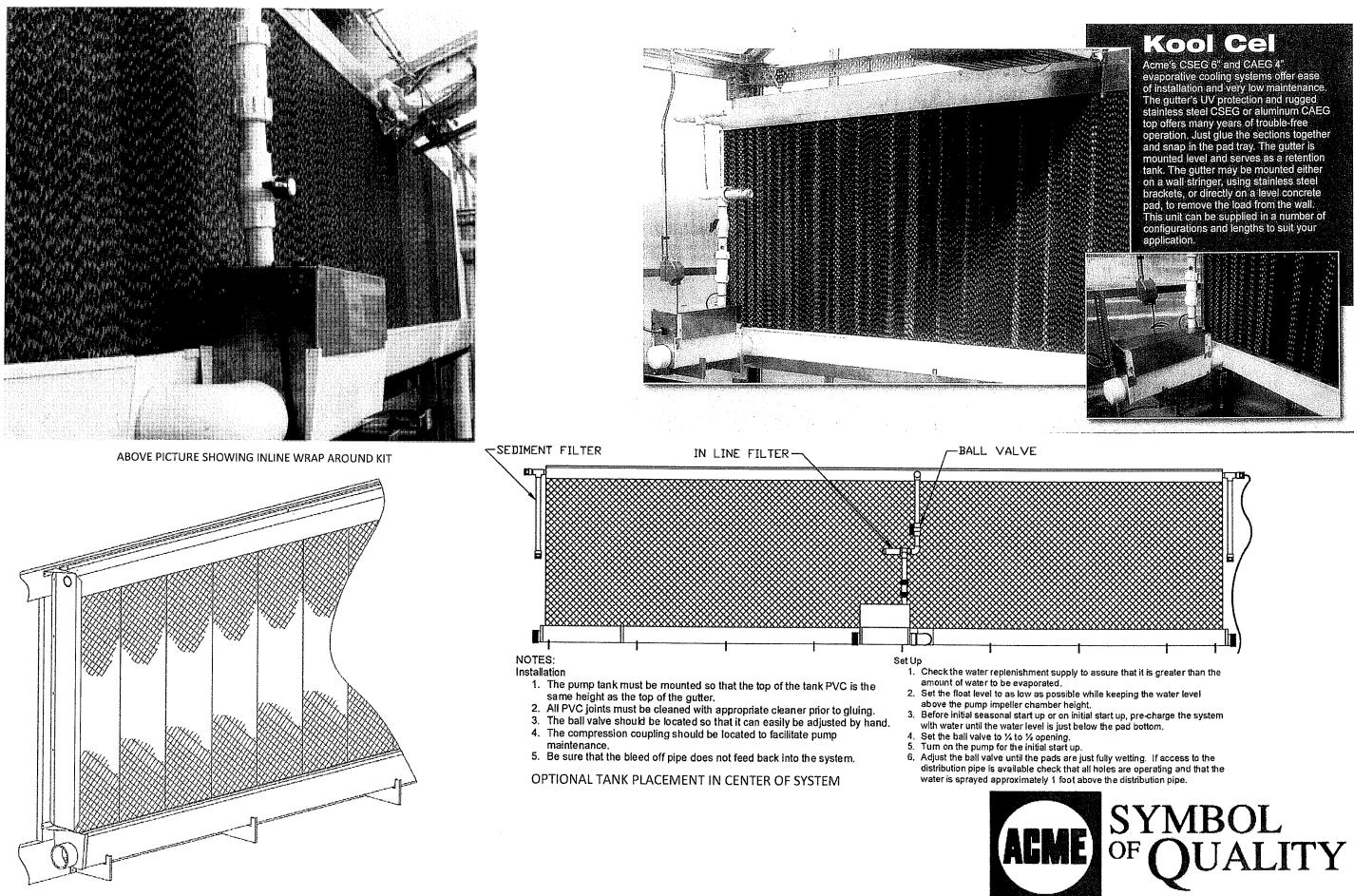

in operation.

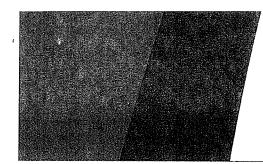
- Keeps out wind, rain and backdrafts when fan is not

SHUTTER	DIN				
MODEL	OVERALL	OPENING			
	46×10	45x15			
	£6x26	23x23			
- WAAG4040MT	40×40	27,27			
<u></u>	<u>62×10</u>	60×15			
	63x40	<u> </u>			
		68723			
WAAC6363MT	63x63	60x60			

ALUMINUM WALL SHUTTERS

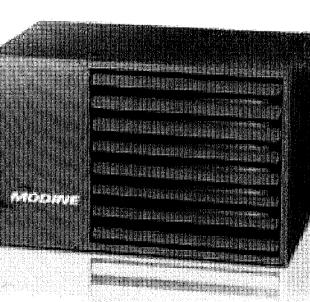

MOTORIZED INLET SHUTTERS


New cam pulley operator - Provides long life to motor - corrosion resistant.


Motor draws only 17 watts.

WAAC models are center pivoted to open easier against house static pressures.

 Motors are available in 24v, 115v, 230v, 460v,
 (Specify Voltage Required).



BRING VALUE TO YOUR SPACE WITH THE NEW PTP HEATER.

PTP unit heaters can use natural or propane gas, and are available in single-stage or optional two-stage controls.

Introducing the new power vented, PTP unit heater line with stainless steel bent tube heat exchanger standard. The PTP was specifically designed with the customer in mind to provide high value at a reasonable cost. Backed by Modine's nearly 100 years of pioneering HVAC innovation, the horizontal mounted PTP delivers reliable performance and longer life in a small-business-friendly package.

Proneller Unit Model PTP General Performance Data

		Model PTP Sizes										
]		5	1	1		D	300)	4)
BTU/Hr Input ¹	15	000	17	000	20	00	25	000	300,000	35	00	40 00
BTU/Hr Output ¹	12	000	14	000	160	00	20	000	240,000	28	00	320 00
Max. Mounting Height (Ft.) ²									19			
Heat Throw (Ft.) (@ Max Mtg Ht)²		200 200							69			

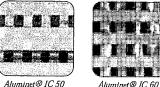
BENEFITS OF THE PTP LINE INCLUDE:

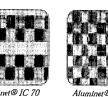
- Stainless steel heat exchanger comes STANDARD on all units, extending the life of your investment
- 10-year heat exchanger warranty is STANDARD, providing you peace of mind
- Totally enclosed, permanentlylubricated fan motor outside the cabinet is standard for trouble-free dependability
- Constructed with Modine's proven tubular heat exchangers for a low-profile design on jobs with lower mounting heights

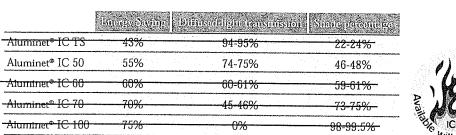
- ¹ Ratings shown are for elevations up to 2,000 ft. For elevations above 2,000 feet, ratings should be reduced at the rate of 4% for each 1,000 feet above sea level. (In Canada see rating plate.) Reduction of ratings requires use of a high altitude kit.
- ² Data taken at 55°F air temperature rise. At 65°F ambient and unit fired at full-rated input. Mounting height as measured from bottom of unit, and without deflector hoods.

- Optional finger-proof fan guard for low mounting height applications
- Power exhauster and controls mounted inside the cabinet for protection from airborne moisture and dust
- Installs guickly and easily with knockouts and field gas and wiring connections inside a roomy controls section for quick and easy access
- Proudly Made in the USA

Aluminet [®] I Open Screens							
Atuminet® 401	Aluminet® 50 I	Aluminet® 601	Atuminet® 701				
	Similaronange	Dimissonighterms	mission all deligy grating				
Aluminet® 40 I	40-43%	72%					
Atummer® 50 I	49-53%	65%	20%-				
Aluminet® 60 I	62-64%	55%	36%				
Aluminet® 70 1	70-74%	45%	45%				


Aluminet® I Open Screens provide multiple solutions where both heat-stress reduction and frost protection is necessary. The double-sided reflection screen helps to protect your crop against both midday heat stress and overnight frost.

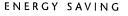

Light transmission parameters were tested according to ASTM-D 1746 & ASTM-D 1494 methods.


Aluminet[®] IC Closed Screens for Energy-Saving

Aluminet® IC TS

Aluminet® IC is highly recommended for greenhouses where a high level of energy saving is essential. Tests show that Aluminet's insulation properties contribute significantly to reduced energy consumption.

Energy savings tested by the INTRON Quality Assessment Institute in Test no. R20010307 on Nov. 8, 2001. Light transmission parameters were tested according to ASTM-D 1746 & ASTM-D 1494 methods. Fire retardant parameters were tested according to NFPA 701 regulations.


WHY SHOULD YOU CONSIDER **INSTALLATION OF ALUMINET® SCREENS?**


Saves energy

productivity.

Warranty

D

Light Diffusion

condensation on leaves.

uniform light throughout the greenhouse.

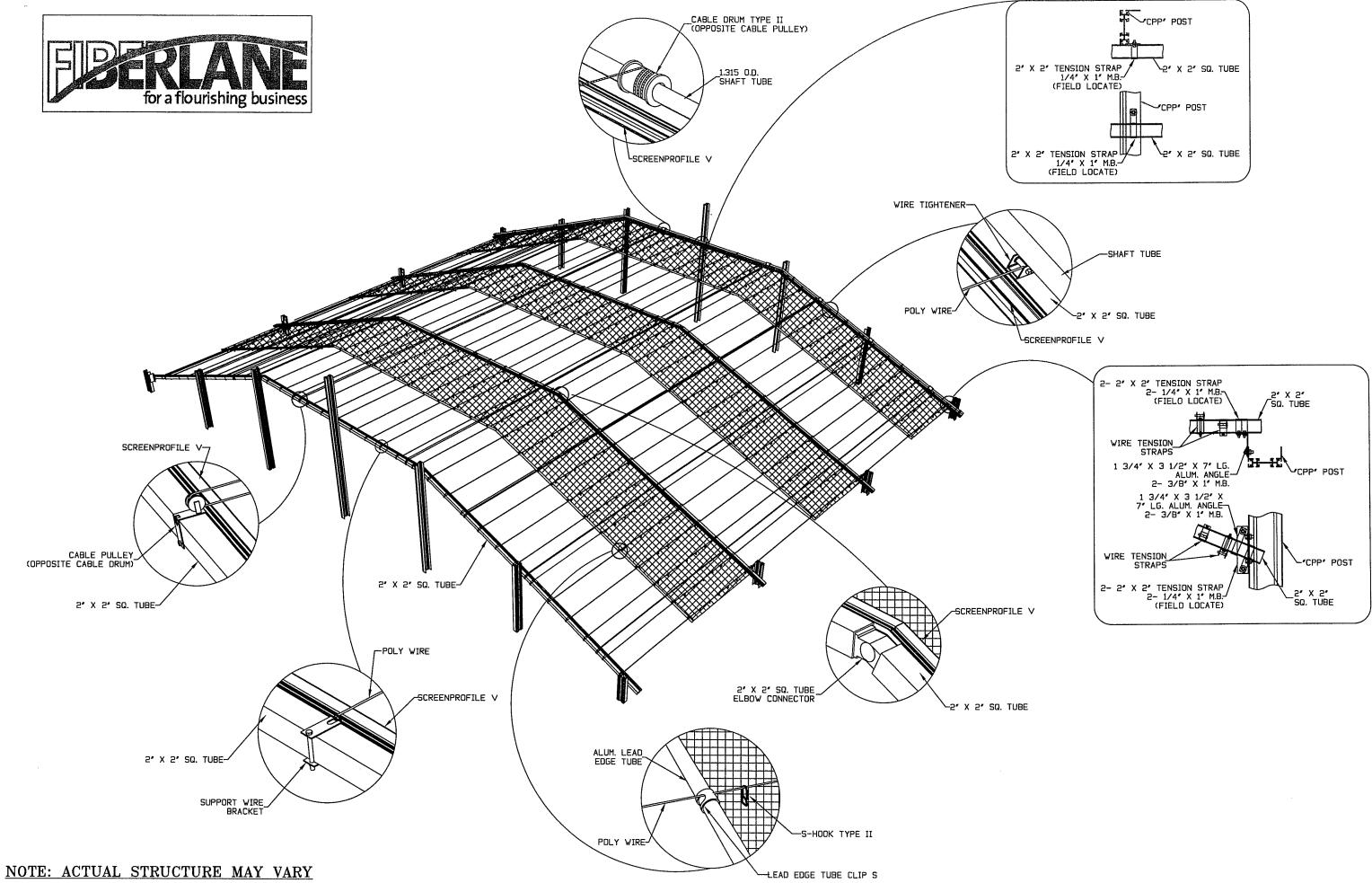
Aluminet® screens have been tested and proved to save over 50% of heating energy, which means direct reduction of your operational costs.

Increases vields

Better temperature control, together with optimized light management, ensure maximum yield from your greenhouse. Aluminet® screens raise plant temperatures at night, avoid overheating in the day and improve photosynthesis by increasing the amount of scattered light.

Protects against frost

Many outdoor crops benefit from improved climate management. Aluminet® screens installed on light-frame shade houses protect crops from frost, wind and heat stress, increasing both crop quality and


Aluminet[®] screens carry a long-term guarantee on product quality. The company's quality assurance policy focuses on supply of quality products to its customers - for long-term use - under harsh and diverse field conditions. All the company's activities are conducted under ISO 9001 and IQNet standards.

HOW DOES IT WORK?

Double-side reflection

Aluminet[®] screens reflect sun radiation during the day, reducing overexposure to heat, and reflect IR radiation at night, increasing plant temperature and reducing risk of freezing. The screens also prevent

Aluminet's special structure improves light management. The use of special additives and the multifaceted reflection of the twisted Aluminet® strips contribute to efficient diffusion of incoming radiation, creating

.

Integrated STEPTM Controls

EnviroSTEP™

Each year hundreds of growers install EnviroSTEP controls in their greenhouses. It's the flexible, rugged choice to integrate the climate control equipment for one zone. There's no better combination of power and value than the EnviroSTEP. Garden centers, production growers, laboratories and schools all benefit from this control. And it bears the UL mark, your assurance of regulatory approval.

Features:

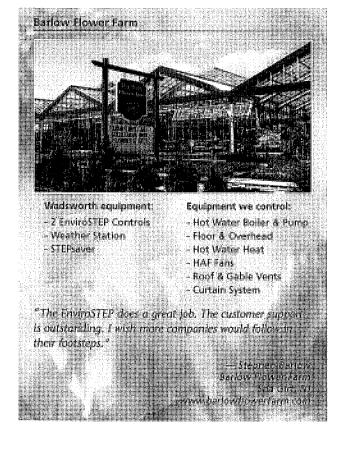
- Single zone control
- 3 set point periods day, night and DIF
- 12 relay outputs with manual override switches
- @ 2 analog outputs (0 to 10VDC) to control variable-speed fans and modulating valves
- 7 analog input channels for connecting light, CO₂, RH and temperature sensors
- 4 digital detector channels sense precipitation, wind speed and direction
- Records the status of all inputs and outputs in 15-minute increments
- Alarm outputs: temperature, RH and power failure
- Replaceable 10 amp DPDT relays, can operate a wide variety of equipment — these relays reduce the cost of your contactor panel

- Durable corrosion-resistant cabinet with locking door protects your control
- Cabinet measures 16" x 16" x 5"
- Largest display in the industry; has menu-driven choices and graphic functions
- Keypad for easy operation
- Ramping allows for gentle transition between set point periods and saves fuel

Includes:

- Solar-guarded aspirated temperature and humidity sensor and 100' of cable
- Solar-shielded outdoor temperature sensor with 25' of cable

Integrated STEP™ Controls


Maintaining the Climate for Growth

- temperature, humidity, light level, CO₂ and watering.
- allow each piece of equipment to have it's own parameters. These advanced controls offer more precise control. Now more than ever, the Wadsworth STEP brand name is your key to a Simple Total Environmental Program.

Advantages to using integrated controls:

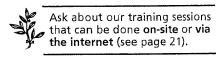
Easy to Use

- IN Your integrated control is plug-n-play; all you need to do is connect it
- Although our settings are optimized for the typical greenhouse, customizing your control is simple
- Your shipment includes an instructional DVD
- Largest screen in the industry includes graphic capabilities
- Interface panel is easy to use simply push the button to select the desired option from the menu and press the GO key

Our EnviroSTEP and VersiSTEP integrated controls monitor and manage all aspects of climate:

Unlike staged STEP controls that group several pieces of equipment into stages, integrated controls

Enhances Crop Quality


- Provides uniform growing conditions
- Multiple set point capability mimics nature, improves crop quality and hardiness
- Increased precision in monitoring and equipment control, each piece of equipment has its own parameters
- Highly accurate temperature and humidity control

Reduces Fuel Costs

- Maximizes energy management
- Reduce energy consumption by lowering night temperatures, this is when 80% of the heating occurs
- Ramping allows for a gentle transition between set point periods
- Solar-guarded, aspirated temperature and humidity sensors provide excellent accuracy. This counts in real-world terms; consider that for every one degree of improved accuracy, your energy consumption is reduced by 3%

Increases Productivity

- Automation allows you and your staff to focus on other aspects of running your business, such as growing plants and growing sales
- The EnviroSTEP or VersiSTEP are a great addition to your team. Your control works 24/7, with no complaints, and it will do exactly what you tell it to do. Talk about good management/labor relations!
- Add STEPsaver software (see page 14) to save even more on labor costs

Integrated Controls - Sensors

Computer Weather Station

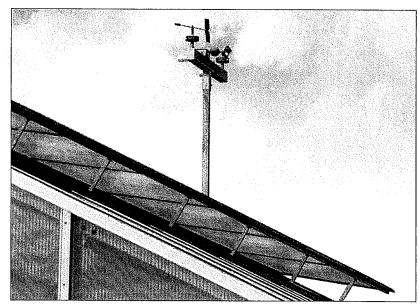
Temperature

Precipitation

Light intensity

Accumulated light

🛯 Humidity


Wadsworth's Weather Station monitors

the following outdoor weather conditions:

Wind speed and direction

Optimize the power of EnviroSTEP and VersiSTEP

Wadsworth sensors increase the power of your integrated STEP controls. By using additional sensors, your control can make anticipatory decisions for optimum control. Visit our website at www.WadsworthControls.com to learn more about how sensors add power to your integrated controls.

Part #M-4825 Shipping Wt. 90 lb | 41 kg

EnviroSTEP and VersiSTEP Sensors Temperature and Humidity Aspirated Sensors

Temperature_Aspirated Sensor__ne-RH Part #M-4822 Shipping #453 [2] 1.4 kg Part #G-0405 2-Pair Cable for M-4322-morgton

Part #M-4821 Shipping Wt. 3 lb | 1.4 kg Part #G-0400 -4-Pair Cable for M-4821 espirato

Stain to Standau Jemperature Probe Part #ML442-Entrang Will To He LLQ

CO2 Sensor

Part #E-1505-31100 Wt. 3107-1-4-44

Light Sensor (Fynauc neus Part ND-1326-Shimtong With the Sta Hot Water Senser Part #M_4820-5Httpsing WE TH-+9-5-kg Weather Station (photo shown above)

Part IIM-4825 Shipping Wt. 90 lb | 41 kg

Sensors

Wadsworth's sensors provide accurate temperature and humidity readings. Housed in a solar-guarded, aspirated unit. A fan draws air across the sensors providing an accurate ambient temperature reading rather than an incorrect reading due to direct sunlight exposure.

For every 1° of improved accuracy you reduce energy consumption by 3%.

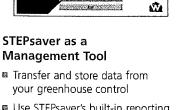
"The sensors inside and outside the greenhouse help us to maintain the perfect soil moisture."

> — Peter Thaman-Bigsby Texas Floral Azle, TX

Integrated Controls - Software

STEPsaver™ Software

Add the convenience of your PC to the power of your environmental control. STEPsaver provides a single view of all of your greenhouse zones. Allows you to monitor and make changes from your PC or via the internet. It provides advanced data logging and analysis tools to help you manage your crop.

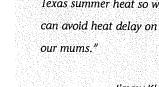

STEPsaver as a Productivity Tool

- View conditions for the entire greenhouse range at a glance. For greenhouses with many zones or acres, STEPsaver is a step saver
- All features accessible with pointand-click menus and buttons
- Allows you to see and change the settings for any controller in any zone
- Not limited to a single PC. No extra charge for sites with a Local Area Network
- Oversee the greenhouse climate. no matter where you are
- STEPsaver Imaging takes a snapshot of all settings so you can replicate previous success
- Instructional DVD included

Q' Q 🖬 🖬 🗛 6 1 ALAA 30 Sen SV 6000 0 P PO Editestas Dir Back STEPsaver as Your Watchdog 上陸的 STEPsaver controls for alarm reports

"Data from the STEPsaver logging feature helped us achieve the lowest possible night temps while running the fewest amount of exhaust fans. This is critical in the Texas summer heat so we

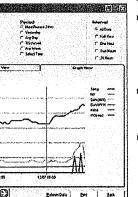
—Jimmy Klepac Klepac Greenhouses Blanco, TX

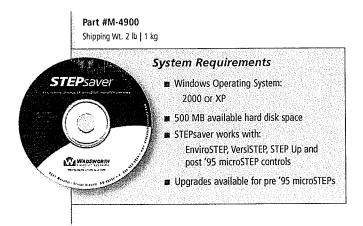

Westerla

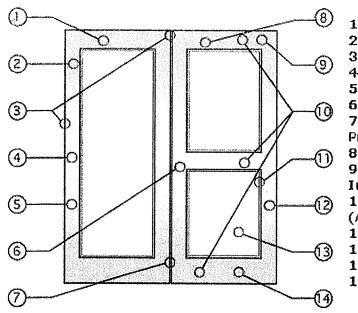
Curwfre

- Use STEPsaver's built-in reporting tools to summarize stored data. Know how many hours your fans or heaters ran. Confirm that systems ran as you expected. Learn the average temperature and humidity for day, night and DIF
- Manage access to settings with user names and passwords
- Access STEPsaver over the internet, with user name and password protection

15


14




STEPsaver as an Analysis Tool

- STEPsaver expands the graphing power of your Wadsworth STEP control
- Analyze temperature with equipment use

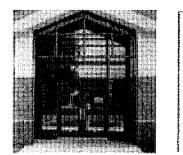
- Compare data between zones
- Filter data to pinpoint every data entry, or broaden your view to a few points that represent hours or a whole day. Spot long-term trends by hiding detail
- Exact Create custom views of your data that combine sensor readings, equipment use and weather
- Dynamic, quick, and easily done with a few mouse clicks
- STEPsaver constantly monitors your Wadsworth STEP
- Pop-up window on your desktop PC alerts you to trouble
- With your permission, STEPsaver reports to e-mail, or it will text your cell phone or PDA
- Makes an ideal complement to your Alarm Manager or other alarm monitoring system

- 1. Available 6-1/2" Head Rail for Closer Mount without Using Drop Plates 2. 4-1/2" Stiles Width
- 3. .187" Edge Wall Thickness on Lock and Hinge Stiles
- 4. Nominal .125" Door Face Thickness
- 5. Tubular Aluminum Extrusion Construction
- 6. Flexible Design for Multiple Hardware Applications

7. Durable Woolpile Weatherstrip with fin strip for Positive Weather Protection

8. Rail Face Thickness is 3/16" to avoid through bolting closers 9. True Mortise and Tenon Construction at Every Stile and Rail Intersection (Standard) - No Messy Welding Involved 10. Number, Size, and Location of Horizontal Rails are Very Flexible

(Adaptable to Meet ADA Regulations)

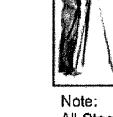

11. Screw Applied Interior Glazing Stops for Easy Glass Replacement

- 12. 1-3/4" Overall Door Thickness
- 13. Accepts 1/4" up to 1-1/4"
- 14. Available in Fluted/Smooth Face, Kynar/Dunar Paint and Anodized Finishes

The same quality and structural integrity that is engineered into our flush door line, is carried over into our stile & rail glass door (storefront entrances). The vertical stilles of the MS-400 series are tubular extrusions that are 4 inches wide. This allows for usage of most commercial hardware. There are a wide variety of glass configurations that can be created, from full view glass to various horizontal and vertical mullion assemblies. These custom variables allow for the creation of many unique entrance designs. Entrances that are required to meet the American Disabilities Act (ADA) are easily fabricated. The base and top horizontal rails of the doors can vary from 4-1/2" to any desired height. Other structural points of emphasis are:

- Door sections are 1-3/4" x 4-1/2" tubular shapes of extruded aluminum 6063-T5 alloy.
- True Mortise and Tenon Joinery at every Stile and Rail Intersection.
- Joinery is 3/8" diameter zinc plated steel tie rods bolted through the stiles. Where applicable, a minimum of three rods will be installed in each door.
- Wall thickness of the extrusion stile face is .125" nominal. While the end wall thickness at the hinge and lock stiles are .187*.
- Meeting stile of all pair of doors have wool pile weather stripping w/ fin strip.
- Glass glazing stops are extruded channels with minimum wall thickness of .125" and are removable only from the inside.
- All exterior glazing is part of the door extrusions and non-removable.
- The glazing stops will always match the finish of the door.
- The doors accept glass from 1/4" up to 1-1/4" thickness.
- Accept hardware of any type and manufacturer as required.
- Available in a variety of anodized and painted colors.


Cross Aluminum's MS-400 series doors are fabricated with a true mortise and tenon joinery. The rails are composed of a spline composition which encompasses the entire Tie-Rod through the full width of the horizontal rail. This construction process provides maximum strength without the use of a welded joint. Utilizing this method allows the owner the option to replace any piece of the door that may be damaged by abuse or accident. This can be done by disassembling the door and purchasing a replacement part, rather than having to spend hundreds of dollars to purchase a completely new door.


1/2 Glass door with midrail and aluminum panel below

Full Glass door with out mid rail

NOTE: ALL Standard Winandy Greenhouse Doors come Prep'd with Standard GOV160 Lock Preparation-2 1/8" dia hole with a 2 3/8" backset.

MATERIAL:

COLOR:

CUSTOM HOLE LOCATIO

DOOR TYPE

DOOR REINFORCEMENT: FRAME REINFORCEMEN SPECIAL FEATURES:

HINGE KING:


HANDING:

FIRE RATING:

SCREW DETAIL:

Standard Medium Stile and Rail Glass Door Entrances

All Standard Winandy Greenhouse Doors are provided with a Heavy Duty Full Mortise continuous gear hinge.

Innovation, Quality, Customer Service

	EXTRUDED 5053-T5 ALUMINUM ALLOY WITH POLYACETAL THRUST BEARINGS
	30 MINUTE CLEAR ANODIZED AND 2-STEP DARK BRONZE ANODIZED
NS:	HOLE SIZES & LOCATIONS PER CUSTOMER SPECIFICATIONS.
	FOR 1-3/4" DOORS, STANDARD / HEAVY DUTY TO 450 LBS. LEAD-LINES TO 1000 LBS.
:	NONE REQUIRED
Г:	OVER 200 LBS. REINFORCE WITH 16 GA. CHANNEL
	LEAD LINES MODEL FOR HOSPITAL X-RAY ROOM. DOUBLE ROW SCREWS TO STRADDLE LEAD.
	TEMPLATED AND HOLE PATTERN IS THE SAME FROM HINGE TO HINGE
	HINGE IS NON-HANDED UNLESS CUT IN THE FIELD.
	UL LISTED FOR 90 MINUTE RATED DOORS. UL LISTED FOR UP TO 3 HOUR RATED DOORS WITH USE OF A STEEL STUD.
	12-24 x 11/16" PH. F.H. UNDERCUT SELF DRILLING THREAD FORMING TEK SCREW

SPECIFICATIONS

APPLICATIONS

For offices, schools, hospitals, aparlments, hotel/motel, residential, commercial and public buildings.

DOOR RANGES

1 %" to 1 %" thickness doors.

BACKSET

2 3/1" Standard, 2 3/1", 3 3/1" and 5" optional,

LATCH FACEPLATE

21/4" x 11/6", adjustable for flat or beveled doors 1/6" in 2", for 23/4" backset. Optional 21/4" x 1" for 2 %" backset.

LATCHBOLT

1/2" Throw solid brass, reversible for RH or LH applications UL Listed.

ANSI STANDARDS

Meets or exceeds requirements of BHMA/ANSI A156.2 Series 4000. Grade 2 (FF-H 106C), 400,000 cycles.

EXPOSED TRIM

Wrought brass, bronze or stainless steel, levers are Zinc casting, plated to match trim finish.

KEYING

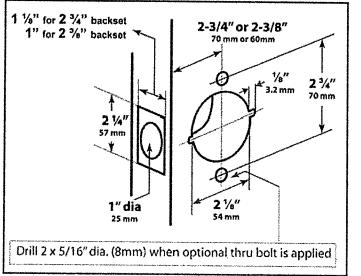
6-pin "C" keyway cylinder, 2 keys per lock. Keying as per individual job requirement.

CYLINDER & KEYWAYS

6 pin solid brass "C" keyway slandard. Schlage E, Schlage C-K, Russwin D1-2-3-4. Corbin 59/60, Corbin-Russwin L4, SargenI LA-LB-LC, Falcon/Weiser E, Arrow A, Yale 8, Yale GA and Kwikset. Can also accept Medeco, Assa, Kaba and Cal-Royal (HSK) High Security Cylinders.

CLUTCH

Clutch available on all keyed locks and privacy functions. Prefic "C" before part -number-

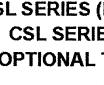

Tactile & Lead Lining available upon request.

INTERCHANGEABLE CORE

Interchangeable Core locks will accept compatible 6 or 7 pin cores with BEST. FALCON and ARROW. Prefix "IC" before part number. Available combinated or uncombinated Temporary construction cores available. Factory keying with control key and masterkey available.

STRIKES: ASA strike standard, "T" and full lip strike available on request.

DOOR PREPARATION

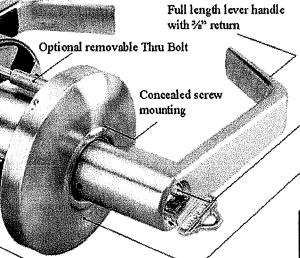


CAL-ROYAL

PIONEER **SL SERIES (NON CLUTCH MECHANISM) CSL SERIES (CLUTCH MECHANISM) OPTIONAL THRU BOLT INSTALLATION**

Specially designed for Barrier Free Application Conforms with ANSI A156.2 Series 4000, Grade 2 Exceeds 400,000 cycles

Optional tactile warning meets handicap and fire code

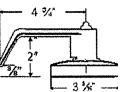

Push in and turn button function

Coil compression springs provide great strength and durability

UL LISTED 3 HOUR RATED 1/3" Throw deadlatch completely reversible for flat & beveled doors

SL/CSL SERIES ANSI GRADE 2 HEAVY DUTY CYLINDRICAL LEVERSETS Available with Interchangeable Core

Cylindrical Body


SL DESIGN

3 HOUR FIRE RATI UL 10C, UBC 7-2-11

Solid brass 6 pin "C" keyway cylinder. Ava with Interchangeable

> Individual spring on side to prevent lever maintain reliability a reduce maintenance

SERVICE

WINANDY GREENHOUSE COMPANY, INC.

SPEED

Greenhouse Manufacturers, Builders and Heating Engineers

New

"SUN-MATE"

ReNew

Phone (765) 935-2111

RICHMOND, INDIANA 47374 2211 PEACOCK ROAD SINCE 1919

Fax (765) 935-2110

SATISFACTION

STRUCTURED PLASTIC PANEL SUPPLEMENT TO ERECTION INSTRUCTION FOR WINANDY "SUN-MATE" INTEGRATED GLAZED ENCLOSURES

- 1) Almost all of the information and instructions for the erection of the "Sun-Mate" tempered glass greenhouse will apply to the Winandy "Sun-Mate" structured plastic panel glazed greenhouse except for the following changes.
- 2) The "Sun-Mate" structured plastic panel glazed greenhouse will either have polycarbonate structured plastic panels or acrylic panels.
- 3) The spacing in the roof and wall rafter spacing will be the same for the structured plastic panel glazed greenhouse as the "Sun-Mate" greenhouse that receives 36" wide tempered safety glass. If your "Sun-Mate" greenhouse is to be glazed with acrylic panels, the rafter spacing on the roof and walls will be at 48" center to center.
- 4) The plan will show the rafter spacings in multiples of 36 3/4" or 12'-3" bays or 24'-6" manufacturing modules. You will know the plastic panel is to be General Electric Lexan or other manufacturer's polycarbonate panels in 6'-0 3/4" widths.
- 5) Roof rafters on the "Sun-Mate" polycarbonate panel glazed roof are different than tempered glass. Refer to your extrusions chart. You will see PBL is designed for receiving structured plastic panels. It will be spaced at every other 36 3/4" hole or spacing lengthwise of the greenhouse to receive the outside edge bed and seal the 6'-0 3/4" wide structured plastic panel. Refer to the extrusion chart for the BD rafter. These rafters will be installed to be in the middle as the mid-panel support for the 6'-0 3/4" wide polycarbonate panels. BD rafters are the correct height to give mid-panel support as indicated on Standard Detail PR-0100.
- 6) Exterior side and end walls where the polycarbonate panels are to be used have a rafter spacing of 6'-1 1/2" and use the polycarbonate panel width of 6'-0 3/4". Refer to your extrusion chart for your PVB rafter and PGC plastic glass cap. These members are normally used on side and end walls. The polycarbonate panels are the normal plastic panels used on a wall. Refer to Standard Detail PC 0050, cross section of structured plastic panels when used on an end wall. This drawing illustrates how to use the PVB rafter, PG Cap, and shows how all are secured to the end frame. Side walls are installed in a similar manner.
- 7) All of the 6'-0 3/4" wide structured plastic panels must be secured with 1 #12 X 1 1/2" TEK with sealer washer placed mid-way of the 6'-0 3/4" plastic panels on exterior end and side walls.

G:\Data\Cristydata\wordpro\DOCS\SUNMATE\instructions\erection-plasticsupplement.doc

[&]quot;An amount equal to any tax or other governmental charge upon the production, sale, occupation of selling, shipment or use of material which is now or may be hereafter imposed by Federal, State or Municipal authorities upon either the purchaser or the Winandy Greenhouse Company, Inc., which the Winandy Greenhouse Company, Inc. is obliged to pay or collect, shall be added to the price and shall be paid by the Purchaser."

Tool List for Installation

The following list is the minimum tools that you should have on-site to facilitate rapid installation of the greenhouse:

- 2 Wrench sets, open end or combination wrench including 3/8", 7/16", 1/2", 9/16", 5/8", 3/4" sizes.
- 2 Socket sets with ratchet including the above sizes.
- 2 Battery power drill drivers capable of running tek screws with tek screws bits of 5/16", 3/8".
- 1 or 2 Battery powered impact wrenches or adaptors for your battery drill drivers to facilitate the rapid tightening of 3/8" bolts on the trusses.
- 1 4' 0'' level
- 1 Laser level or Builder's Level
- 12-16 2" x 4" x 10'-0" or 12'-0" with stakes and clamps to clamp off brace the post with padding to pad the clamps and boards to the posts w/ stakes
- Various ladders, scissor lifts, or Painter's scaffolds high enough to reach the peak of the building and the sides
- Padded rigging to raise the frames into place
- 2 caulking guns
- 1 pop rivet gun ٠
- Aluminum cutting miter box saw & hack saw
- Sheet metal shears •
- Cords & GFI plug •
- Corded screw gun for teks •
- Circular saw w/ plywood blade battery or corded for trim in panels
- Something to raise trusses into place. •
- Carpenter Square •
- Small cable cutters or bolt cutters
- Guide ropes for trusses
- 19' Scissor Lift
- Scaffolding (Recommended but not required) •
- Drill bits for Steel and Aluminum: 1/8", 9/64", 3/16", 1/4", 9/32", 5/16", 3/8", 13/32", 1/2"; (1/8" pop rivets, 1/4" bolts, 5/16" bolts, 3/8" bolts, & 1/2" bolts)

This is the minimum list that you should have on the jobsite. I would recommend more lumber bracing rather than less and extra tools, so that you have plenty of tools to work rapid, especially in the battery powered drill driver etc.

"An amount equal to any tax or other governmental charge upon the production, sale, occupation of selling, shipment or use of material which is now or may be hereafter imposed by Federal, State or Municipal authorities upon either the purchaser or the Winandy Greenhouse Company, Inc., which the Winandy Greenhouse Company, Inc. is obliged to pay or collect, shall be added to the price and shall be paid by the Purchaser."

TGU Curtain Installation Sequence

The curtain system has primary priority in its travel plane area above and below.

- 1) Determine location for 2" X 2" square tube at each end of the area to be covered. Choose a location free of obstructions for the system to travel. Be sure to take into account the system needs to be above heaters, grow lights, and overhead watering yet be out of the way of vent operators etc. Look at suggested location on enclosed drawings.
- 2) Install 2" X 2" square tube securely by bolting it to the structure and taking care to install bolts in alignment. *QC-0608*
- 3) Install drive shaft on to 2" X 2" square tube on end best for drive. Tube motor at one end with shaft supported by evenly spaced offset bearings. *QC-0604,QC-0611*
- 4) Install cable drums on to drive shaft tube one close to each end at a location to allow clear transit of drive cable across the length of the system. Then install the rest of cable drum(s) locating them where the drive cable(s) will have clear transit. *QC-0611*, *QC-0602*
- 5) Install wire tighteners on to 2" X 2" square tube on 16"<u>+</u> center with wire to be on the bottom of the 2" X 2" square tube. *QC-0603*
- 6) Install a minimum of 4 wire tighteners for wires to be on top of 2" X 2" square tube to suspend cloth in alignment. One at each end plus one at each change of plane for the 2" X 2" square tube. *QC-0603*
- 7) Install wire support brackets on opposite 2" X 2" square tube aligned with wire tighteners. *QC-0603*
- 8) Install rubber seal onto screen profiles as shown. QC-0607
- 9) Install screen profiles on to 2" X 2" square tube installed on gables. QC-0607
- 10) Install screen profile(s) onto intermediate bay structure as shown take care to maintain alignment with ends. *TGU TRUSS ATTACHMENT*
- 11) Install vinyl coated cable at ends on the top of the 2" X 2" square tube and install "clip tube PVC" if required. *QC-0609*

Page 2 / TGU Curtain Installation Sequence

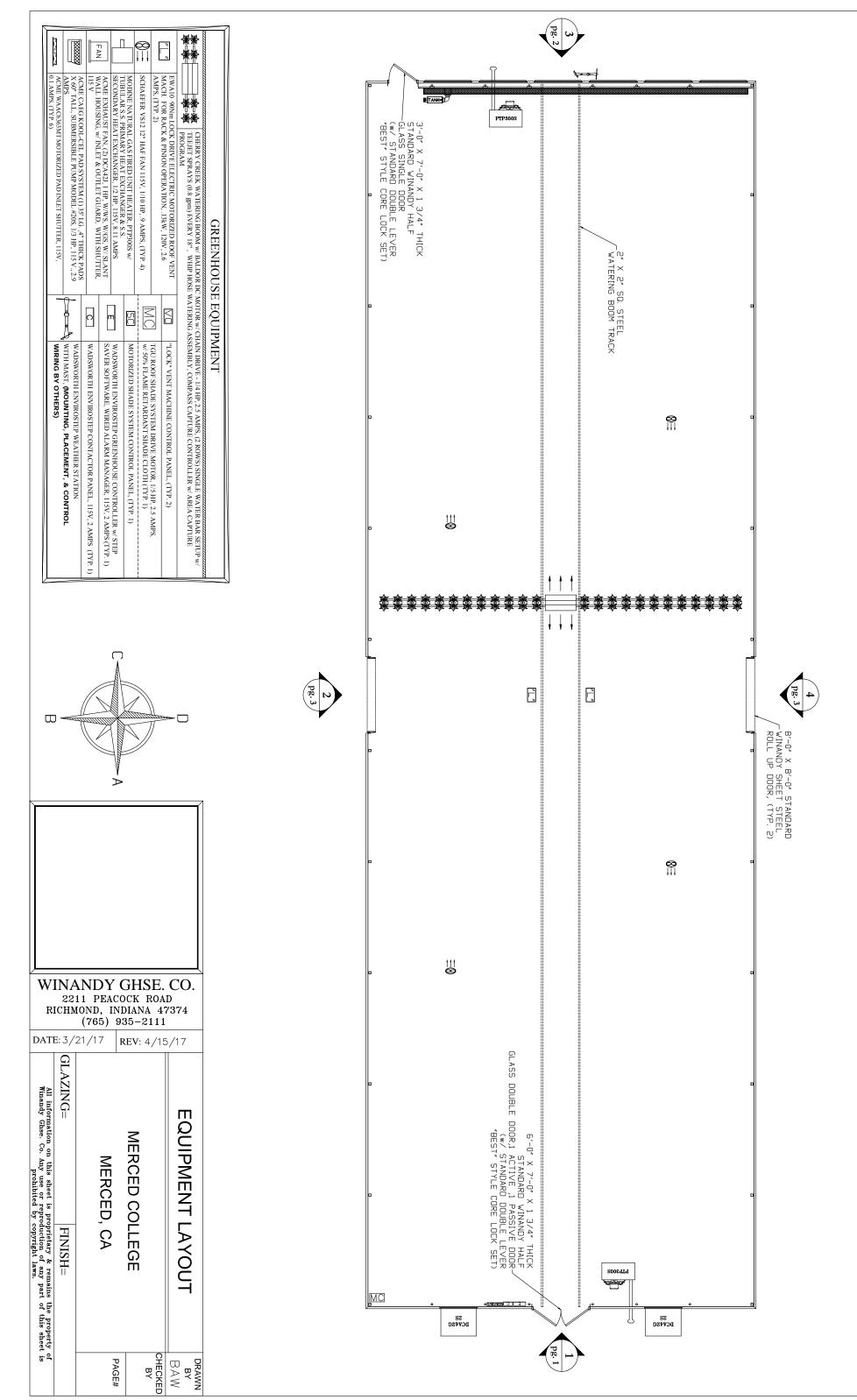
- 12) Install poly wires above and below screen profiles tightening only enough to remove sag. Fastening at support brackets with "lead edge tube clip "L" and/or "S". *QC-0603*
- 13) Run drive shaft to determine open/close sync the control box with the proper direction of rotation (exchange red & black wires to reverse directional control). [Drum(s) should turn so the bottom (closest to the 2" X 2" square tube) of the drum rotates toward the outside.]
- 14) Run drive until stops at the open limit.
- 15) As the drive shaft turns to the closed position observe how the cable would travel across the cable drum.
- 16) Install "cable pulleys with bolt" onto opposite 2" X 2" square tube and align with center of drive drum(s). *QC-0602*
- 17) Install upper drive cable "hanger pulley(s)". Locate so as not to interfere with travel. QC-0602
- 18) Thread drive cable through the pulleys opposite of cable drums. Cable will run above the screen profiles. Wrap the cable around the cable drums 3 or 4 times towards the "open" end of the cable drum and then splice the top cable together as shown close to the cable drum end of the upper cable travel as shown using cable clamps and cable tightener. (Test with one cable installed and then return to closed position and install the rest.) *QC-0602*
- 19) Mark lower cable and test travel. The mark should travel from the closed position next to screen profile backside (non-rubber flap end) to the front side (rubber flap end). Adjust travel length with travel adjustment screws on tube motor. Leave in closed position.
- 20) Install wire guide clips on to intermediate screen profile for poly wire top and bottom of screen profile. *QC-0611*
- 21) Install lead edge tube, attaching to drive cable with lead edge cable tube clip positioning the lead edge to be touching screen profile rubber seal.
- 22) Run drive back and forth to adjust limits. Close limit should have lead edge tube in full contact with rubber seal on screen profile.
- 23) Install shade clothes. Be sure to install the cloth shiny side up. Lay cloth on to bottom poly wires below upper wires. Use "S-hook Type II" to attach beginning edge of the cloth to the bottom of the screen profile. Take care to install straight and to center in the space so edge over hang is as required.
- 24) Use sharp scissors to cut slits in the shade cloth to fit around truss members. Clip the shade cloth on both sides of the cut to the screenprofile using Cloth Clips. Pull together and neatly staple, as required, the cut around the truss members.

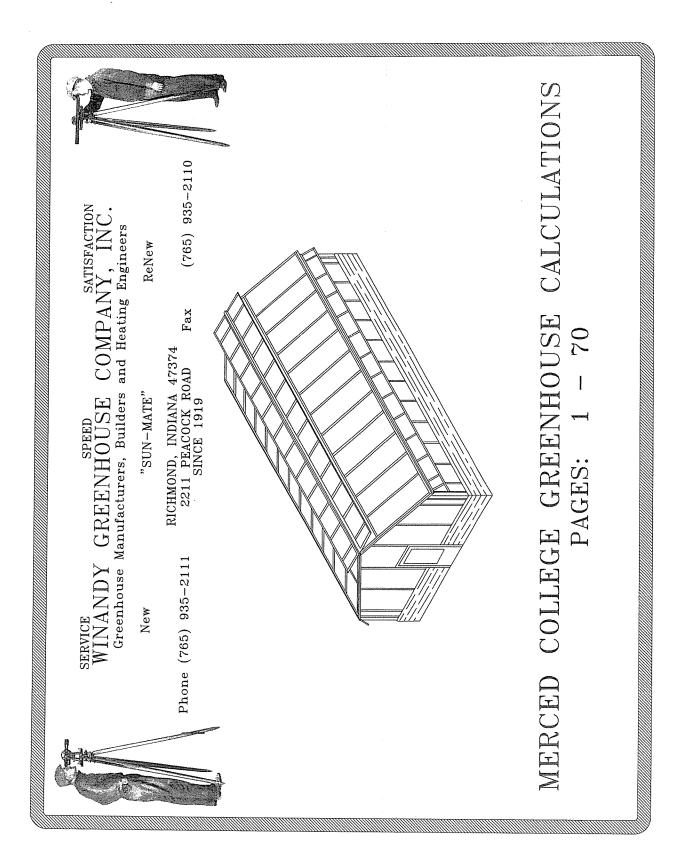
Page 3 / TGU Curtain Installation Sequence

- 25) Install "S-hook Type II" clips through cloth onto poly wires above cloth in line with wire 12" to 16" center (as needed). *QC-0609*
- 26) Install "Screen Hook" clips onto covered cable at edges 12" to 16" centers (be sure to maintain straight alignment so cloth travels square and true). *QC-0609*
- 27) Clip cloth onto lead edge tube with each lead edge tube clip at each poly wire.
- 28) After installation of cloth operate system carefully to check for any place where mechanism or cloth binds on anything also checking and adjusting limits as needed.
- 29) Edge seals can now be installed the ends may be clipped onto the screen profile then attached to the gable. The side edges may be attached to the last lower poly wire then attached to the side walls.

Created 11/14

"An amount equal to any tax or other governmental charge upon the production, sale, occupation of selling, shipment or use of material which is now or may be hereafter imposed by Federal, State or Municipal authorities upon either the purchaser or the Winandy Greenhouse Company, Inc., which the Winandy Greenhouse Company, Inc. is obliged to pay or collect, shall be added to the price and shall be paid by the Purchaser."


BILL OF LADING – SHORT FORM – NOT NEGOTIABLE


Page	1	of	1

			SHIP	FROM	Bill of Lading Number:					
2211 I Richm	dy Greenho Peacock Roa ond, IN 473 35-2111	ad	inc.		3083					
· · · ·			SHI	ΡΤΟ	Carrier Name:					
3600 I Merce	d College M Street d, CA 95348 35-0347	3			Freight Monster					
THIRD PARTY FREIGHT CHARGES BILL TO S					SCAC:					
		<u></u>			Pro Number:					
Call t	al Instruct he Site Con 1347 an ho	ntact, Ra	mon Avil to arriva	la, on his personal phone 209- I so he can prepare for delivery.	Freight Charge Terms (Freight charges are prepaid unless marked otherwise): Prepaid ⊠ Collect □ 3rd Party □ □ Master bill of lading with attached underlying bills of lading.					
				CARRIER I	NFORMATION		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
Hand	ling Unit	I				LTL C	Dniy			
Qty	Туре	Weight	НМ (Х)	Commodity Description Commodities requiring special or additional care be so marked and packaged as to ensure safe tra Section 2(e) of NMFC item 360	or attention in handling or stowing must ansportation with ordinary care. See	NMFC No.	Class			
1	Crate	5700		Aluminum 42" W X 48" H x 25' L	13560					
1	Crate	5650		Aluminum 42" W x 48" H x 24' L	13560					
1	Crate	5650		Aluminum 42" W x 48" H x 16' L	13560	2010/00/00/00/00/00/00/00/00/00/00/00/00/				
1	Gaylord	1375		Fasteners/Caulk/Foam 42" W x 46"	093490					
3	Doors	350		Aluminum 11" W x 38" H x 87" L		13560				
1	Skid	500		Aluminum 42" W x 28" H x 10' L		13560				

8 19,225 Where the rate is dependent on value, shippers are required to state specifically in writing the agreed or declared value of the property as follows: "The agreed or declared value of the property is specifically stated by the shipper to be not exceeding ______ per _____.

Note: Liability limitation for loss or damage in this shipment may be applicable. See 49 USC § 14706(c)(1)(A) and (B).								
Received, subject to individually determined rates or contracts upon in writing between the carrier and shipper, if applicable, classifications, and rules that have been established by the car the shipper, on request, and to all applicable state and federal	otherwise to the rates, rier and are available to	The carrier shall not make delivery of this shipment without payment of charges and all other lawful fees. Shipper Signature						
Shipper Signature/Date This is to certify that the above named materials are properly classified, packaged, marked, and labeled, and are in proper condition for transportation according to the applicable regulations of the DOT.	Trailer Loaded: By shipper By driver	Freight Counted: By shipper By driver/pallets said to contain By driver/pieces	Carrier Signature/Pickup Date					

MERCED College Greenhouse

Table of Contents

Page(s)

- 1 Design Summary
- 2-20 Structural Drawings
- 21-25 Design Load Criteria and Calculations
- 26-63 Load Analysis Calculations
- 64-70 Member Design Analysis

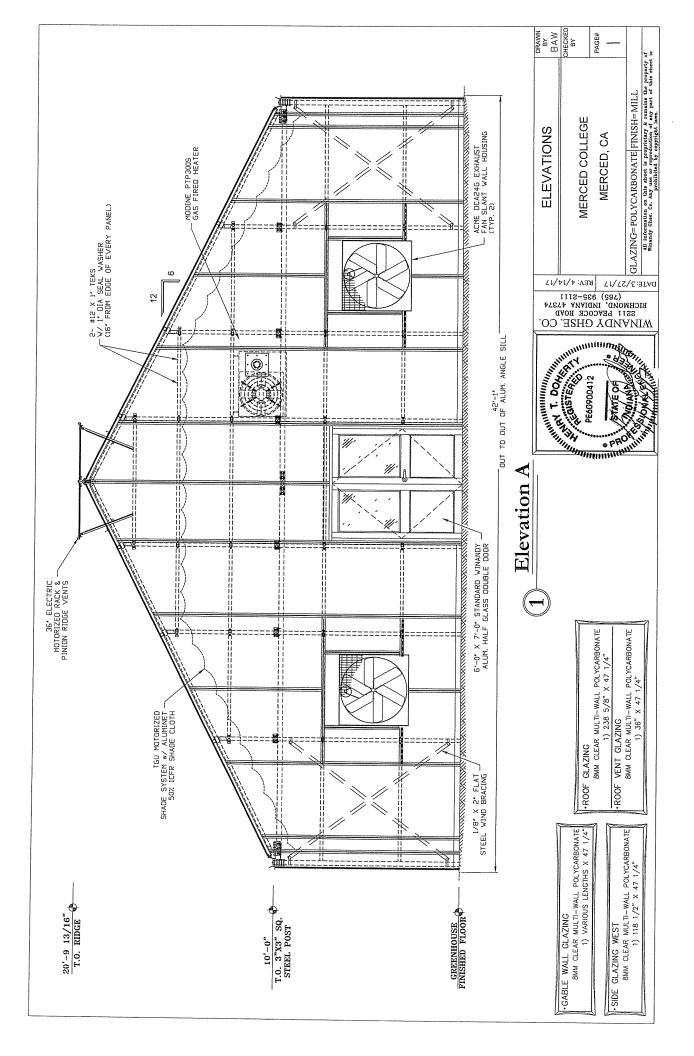
Merced College Merced, CA.

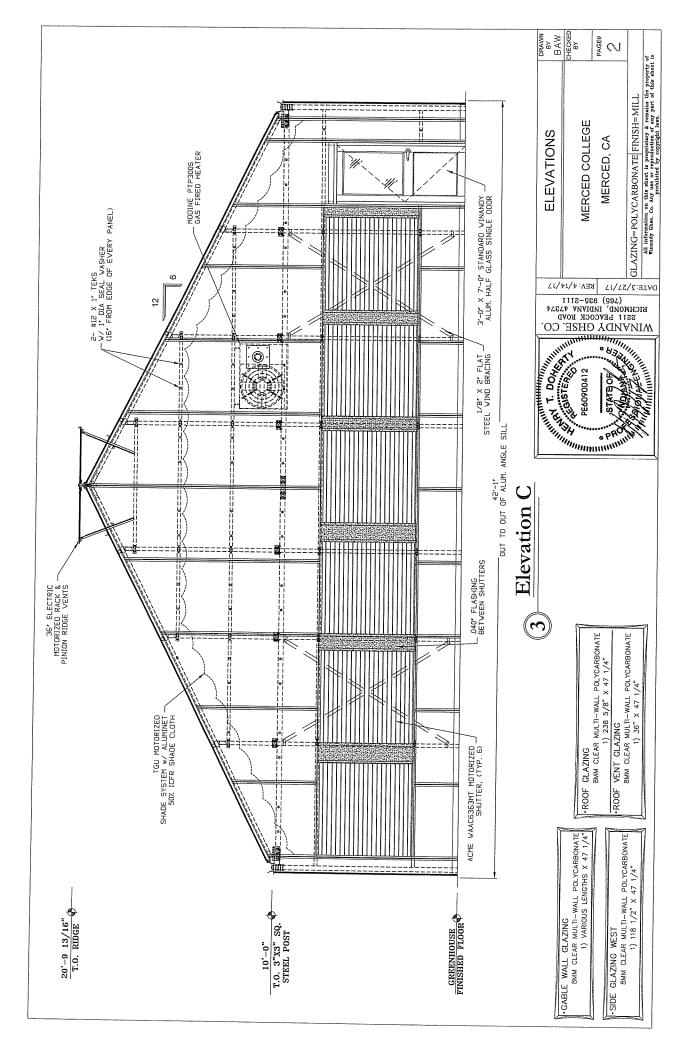
Greenhouse has been designed in accordance with the specifications. CBC/UBC/IBC Code Base 15 PSF Live Load 6 PSF Dead Load Seismic Category D 85MPH Exp. C Wind Load

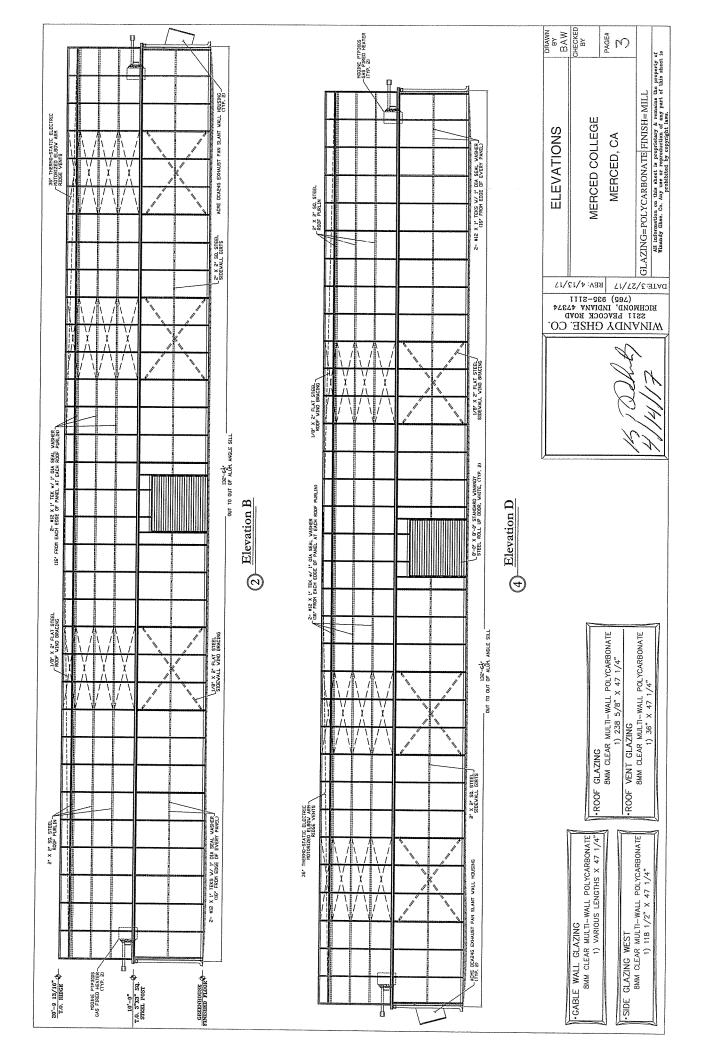
1] All aluminum extrusions are from 6061-T6 alloy or equivalent. Fy = 35ksi.

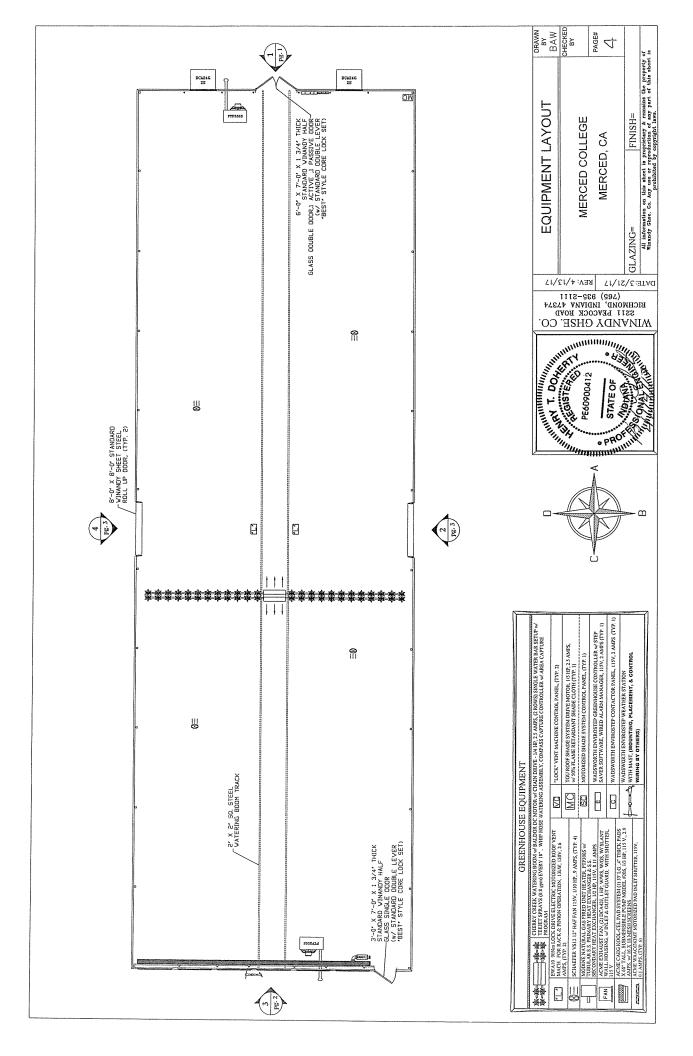
2] All Steel Tube is Hot Dipped Galvanized Coated

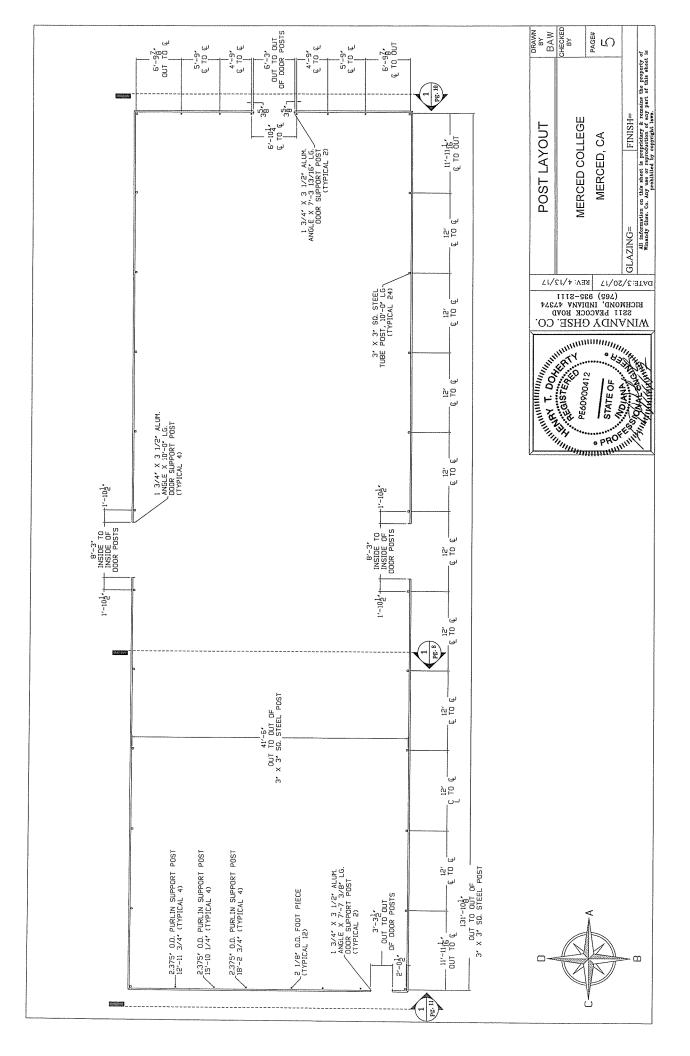
3] All Steel and Fittings are Hot Dipped Galvanized

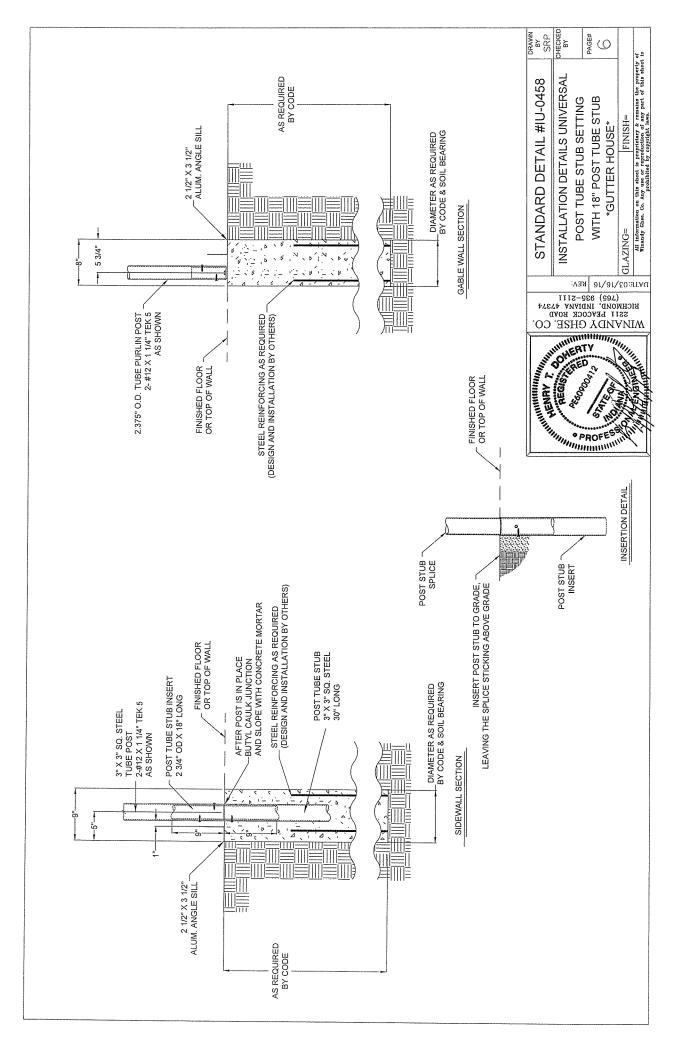

4] All Steel Tubing is manufactured from 50 KSI min yield point steel, 55 KSI min yield point steel

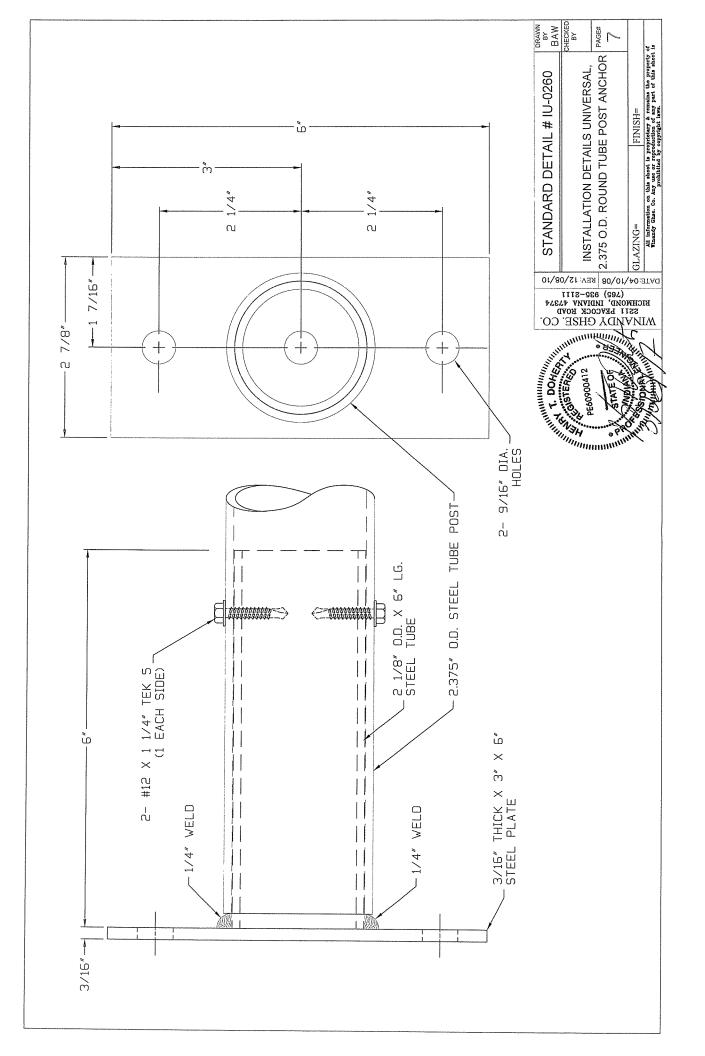

- 5] All bolts are Hot Dipped Galvanized for corrosion resistance.
- 6] All bolts are Grade 5 equal to A-325 in strength rating.
- 7] All connections have been examined and judged to have sufficient fasteners.
- 8] Greenhouse has been designed in accordance with the specifications.
- 9] Greenhouse is to be installed onto foundation designed and installed by others. No floor load is imparted to the greenhouse structure.
- 10] The wind load is greater than the seismic load.
- 11] This greenhouse has a sloped slippery roof covered structure.

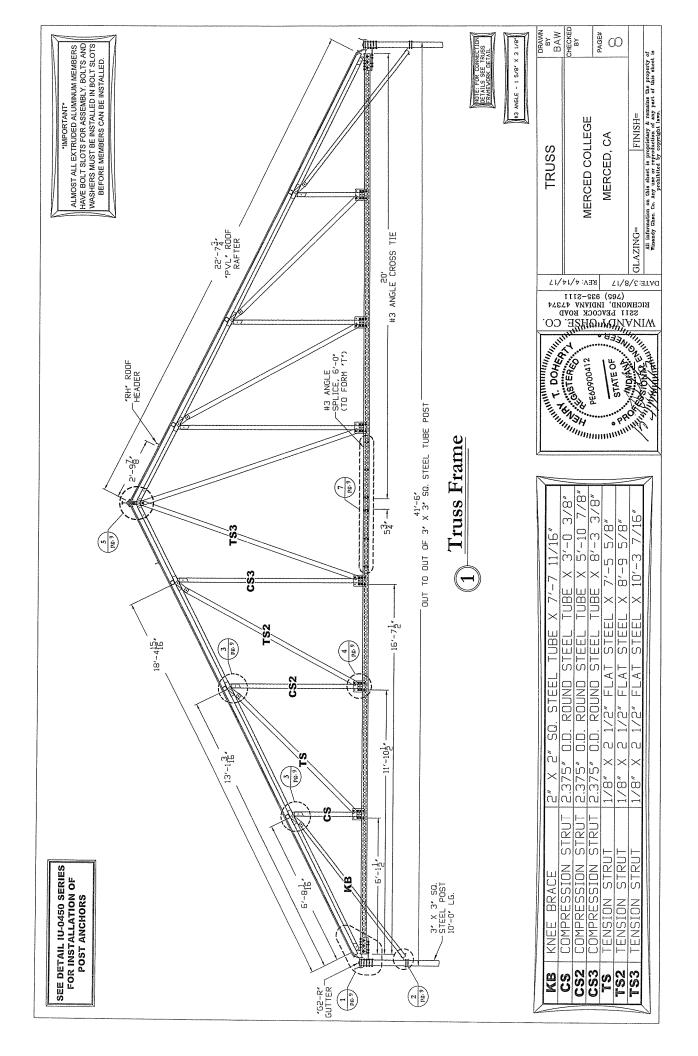

12] All extrusions and fittings are designed to inter-lock as much as possible to minimize fasteners and have been specially designed for structural as well as specific greenhouse functions.

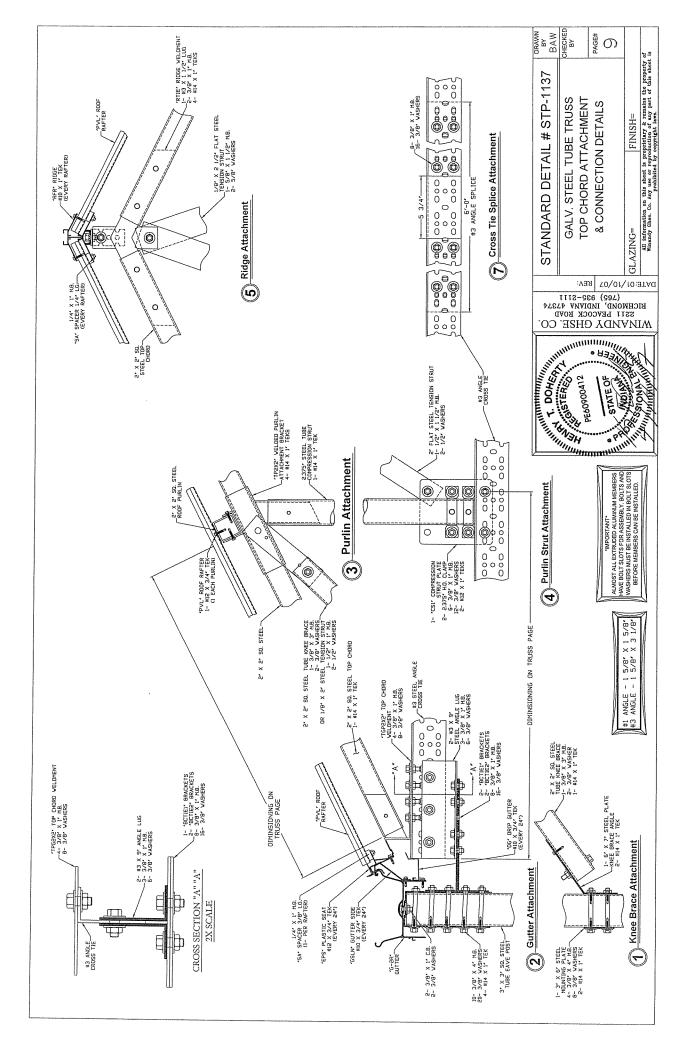

13] All greenhouse members have been checked for ability to withstand prescribed loads.

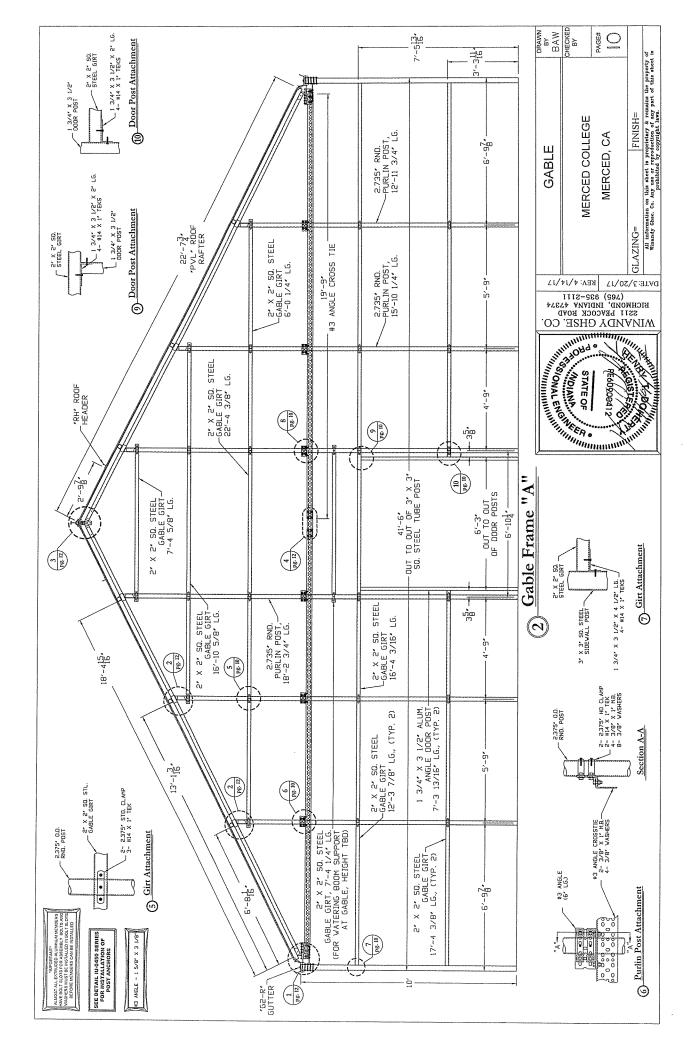

14] The main greenhouse is included in this design only No foundation designs have been included

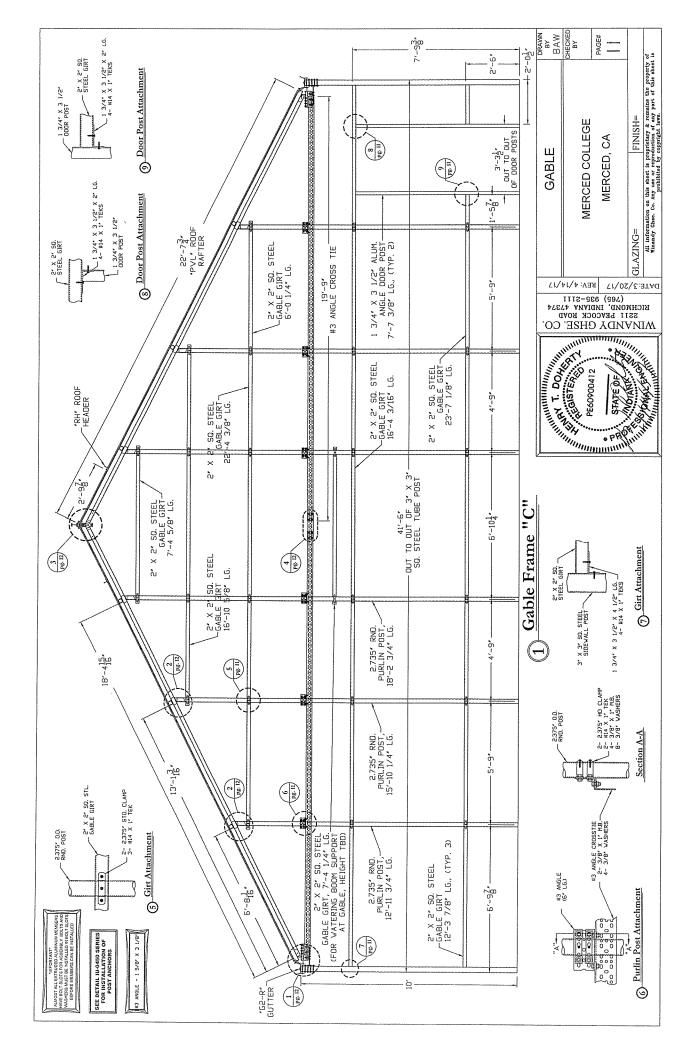


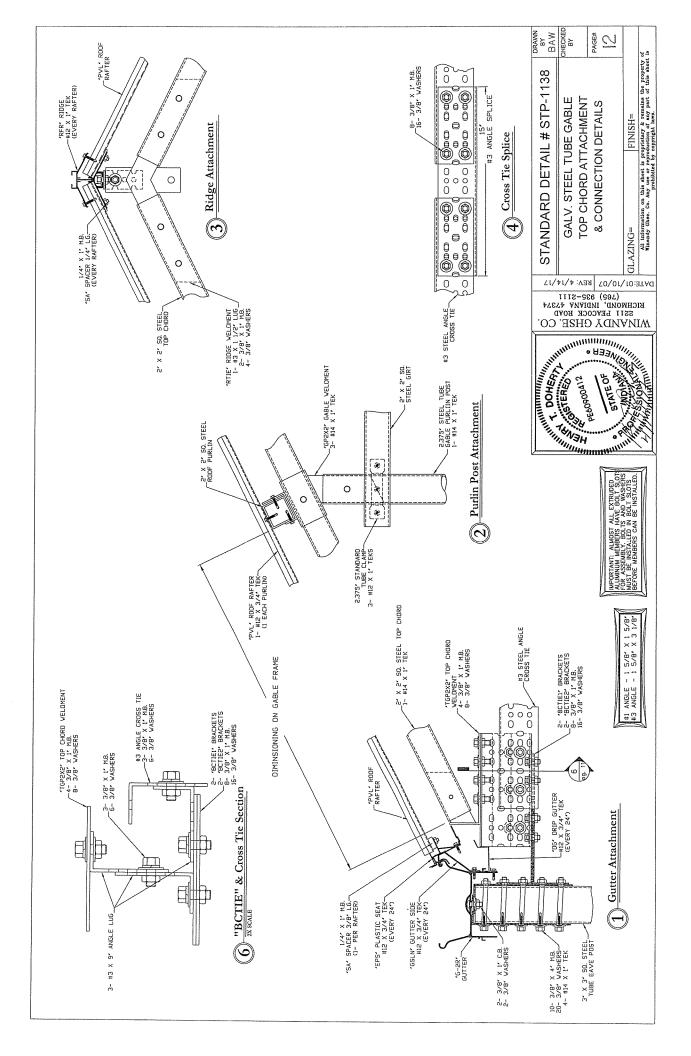


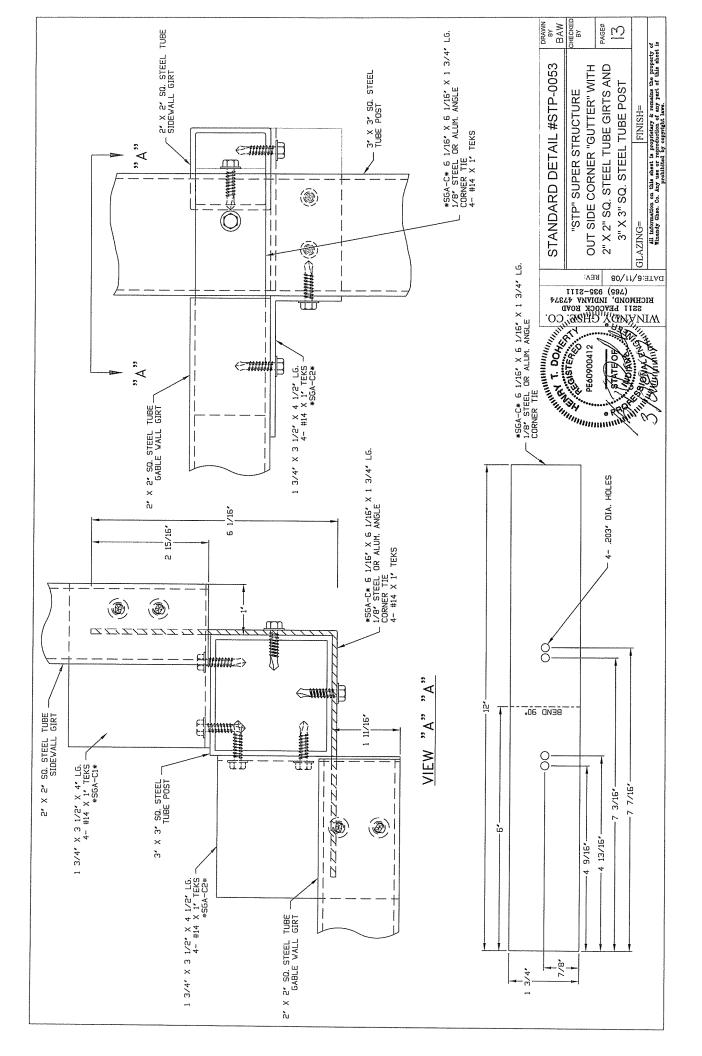


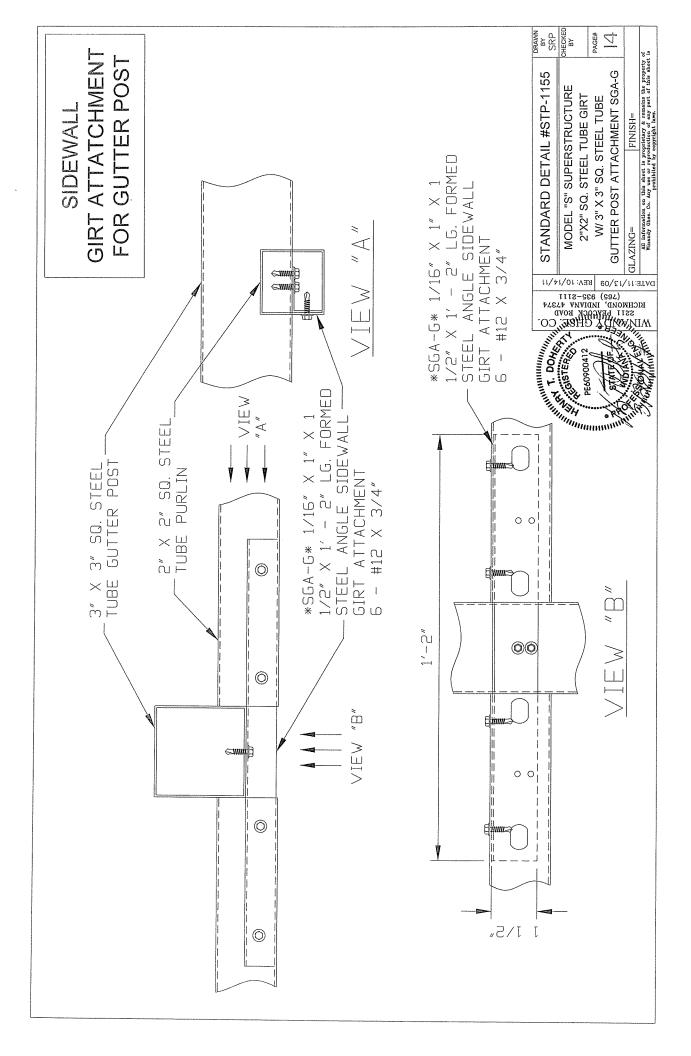


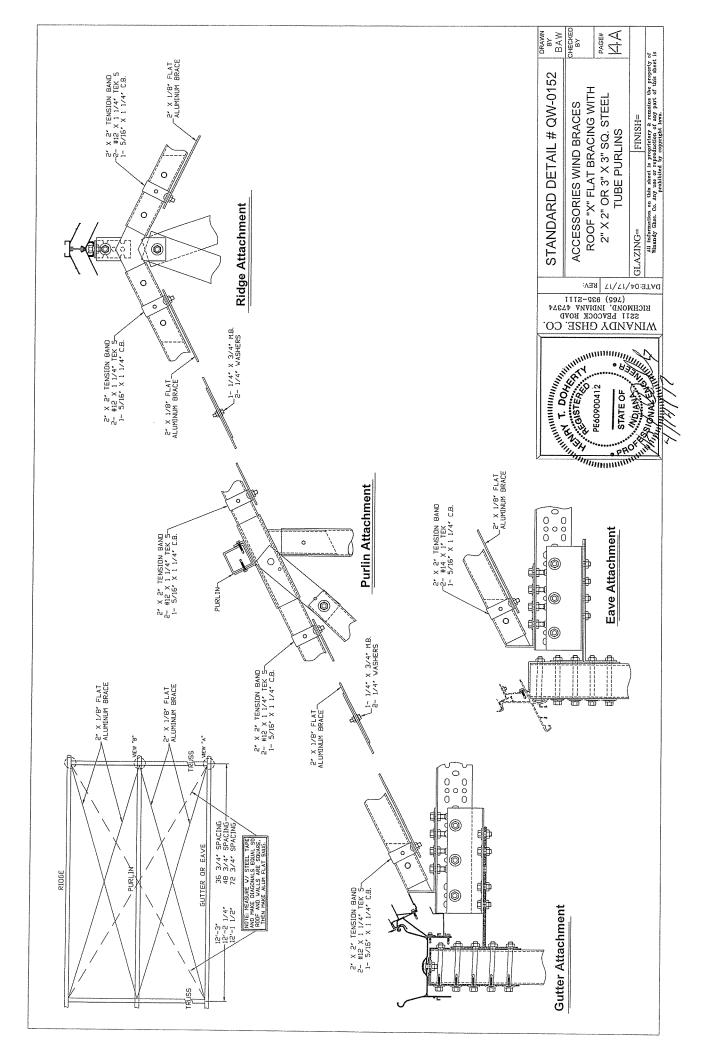


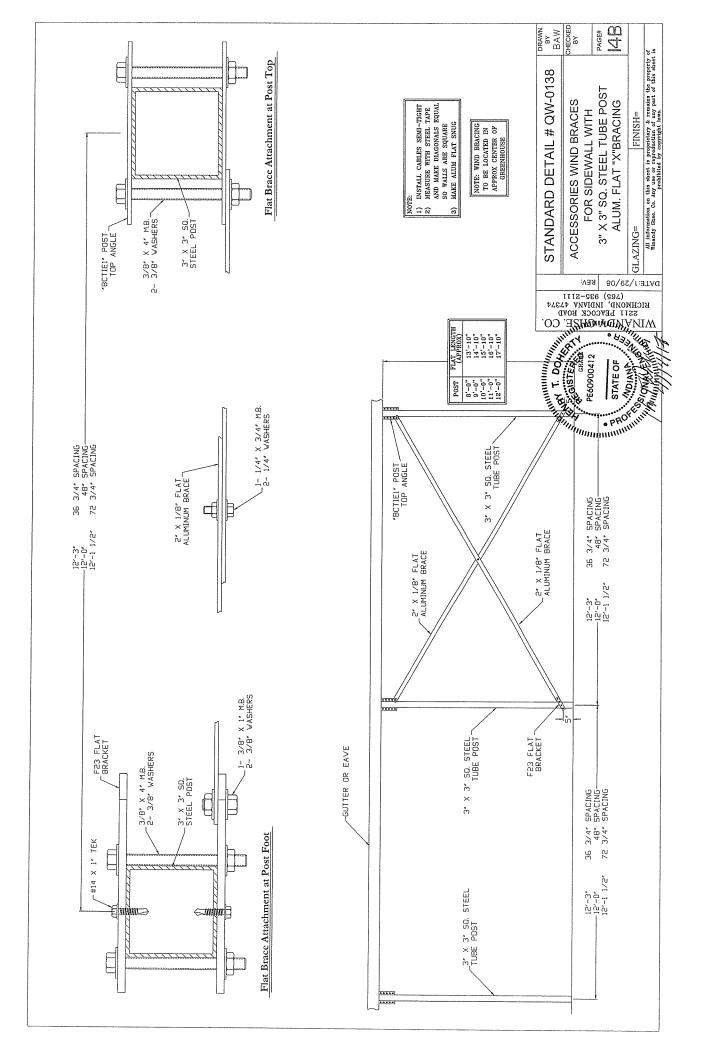


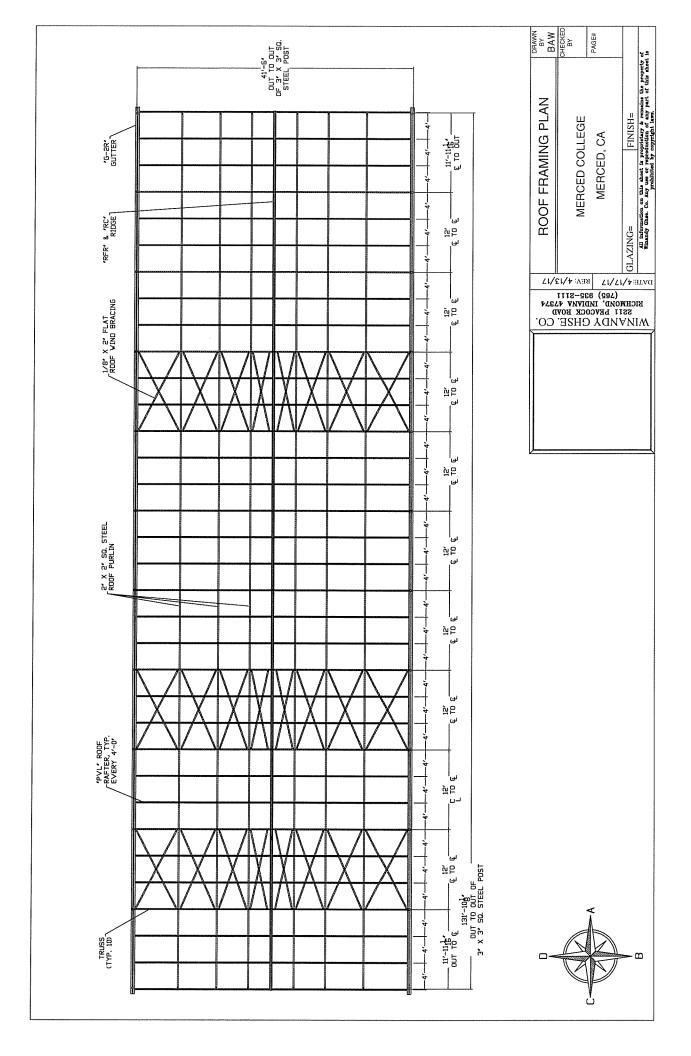


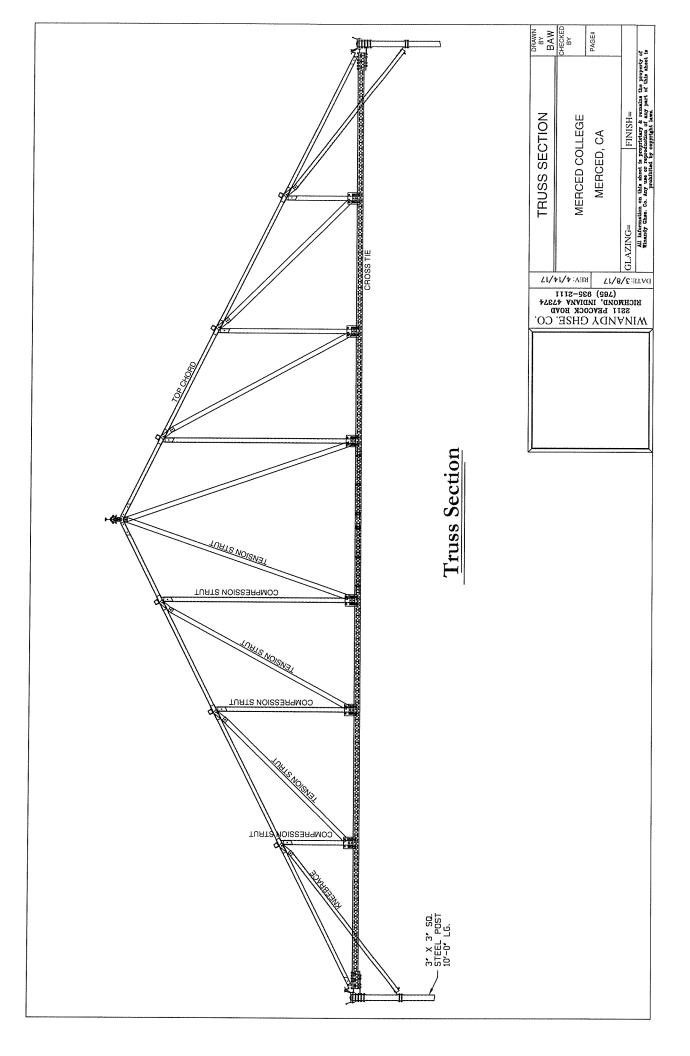


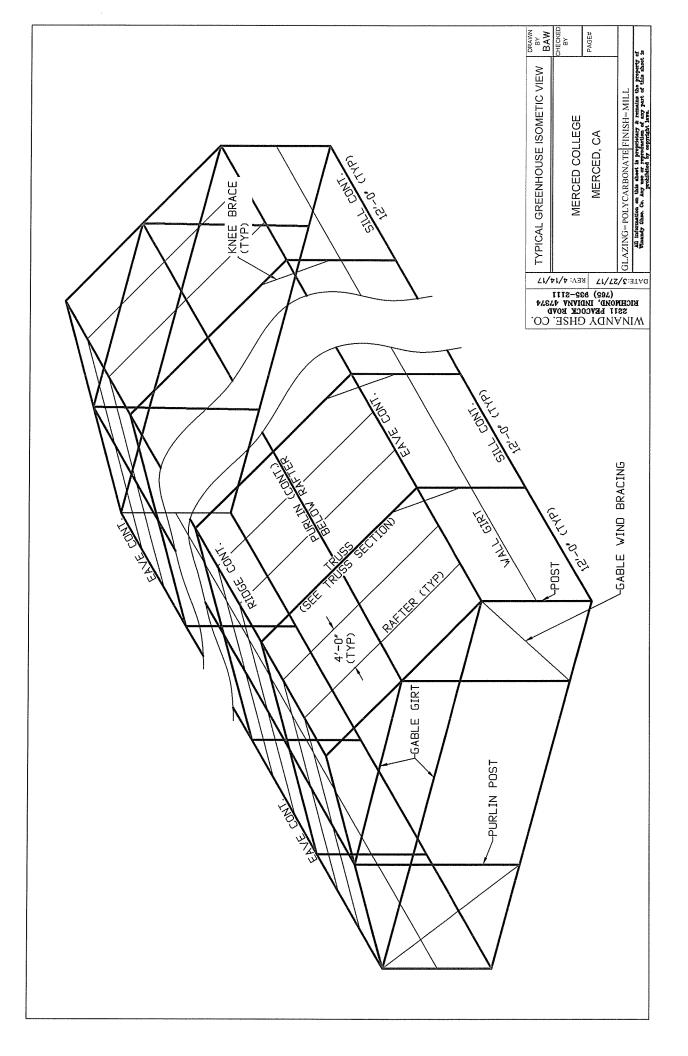


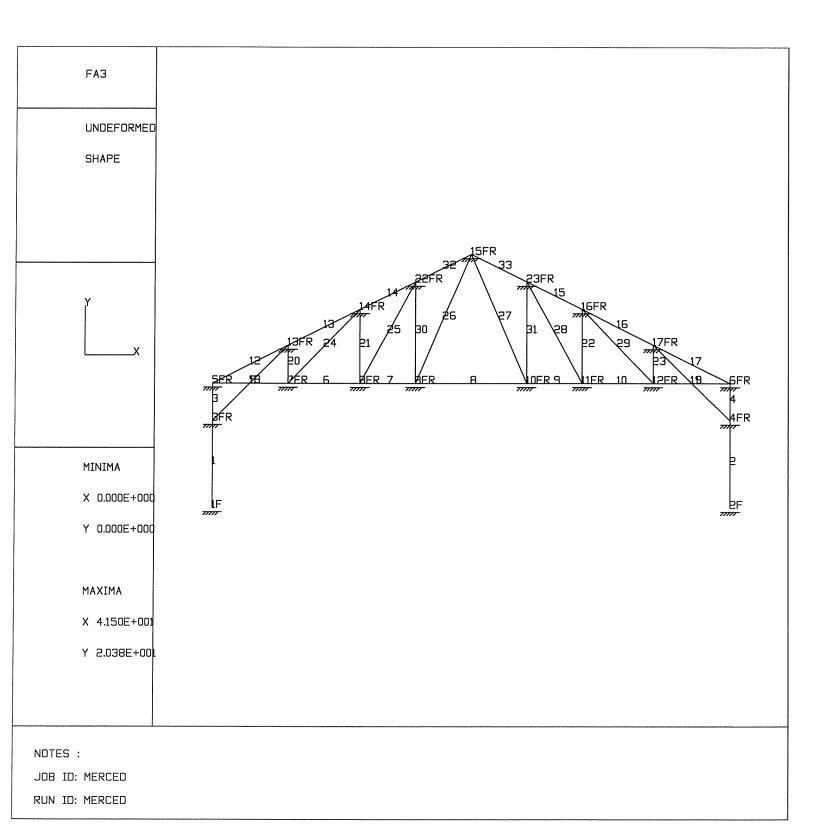












Mercel 3/31/17 DL= 6P5F @ S, S 3' ¥ 12×6 = 216# Note 6' ¥ 12×6 = 432# @13,14,16,17 :6c Element ... Note 1/2 (20.75-11.875) + 12+ 4= 319.5# 22,23 Panellois LL LL= 15P5F 3 +12 +15=540 = -@Node5,6 6 × 12× 15 = 1030# -6 ¥ 12 ¥ 13 = 1030 @ Node 13,14,16,17 (1/2(20,75+11.875)12×15 = 799 @ Node 15 1/2 { 20,75-11.825) × 12 × 15 = 799 # 23

Mercul 3/31/17 WL 90 MPH 105 exp B -7.7PSF 11.7 PSF 17,4 PSF Sidewall 174 × 12 × 3 = 626 # @ Nod 3 17:4 × 1 × 12 = 836 # @ 12 Elem 1 1.5 +12 + 17.4-314 # @Note 1+5 Roof Hoviz 3 ¥ 12 ¥ 14! = 144 # Noc 13,14 + Elem 14 @ 6'2" 1.5 ¥ 12 ¥ 1 = 72 # - Note 5/15 Roof Vipt 3×12×7.7 = 278 × Note 5,15 6×12×7.7 = 555 × Note 13, Mehm 14.062" 3×12×11,7= 429# - Note 15,67 64124 11.7=857 the Node 16,17 Elen 15862"

Merced 4/ #24.1 P5F × 11 = 1061# 17.4 24.10Ends 1105+2210+530,5 =>> 20,75+12 × 17,4×16 = 4420# 17.4 Middle 1061#/2 = 530.5@Bottom 4420/2 = 2210@ Post Base 1105 +2210 +531= 3846 10=tand 10 x=40° X Cos 40° = 3846 # = 5021 # Max WB Load AI

Earthquake hoad Merced Siesnic Shear Note: No Floor Loads Ingparted to the Greenhouse structure & Floor is Slab ongrade. $F = \frac{1.2505}{R} \neq (w_{x})$ Stesmic Use Group 1 505 = 2/3 5m3 5ms = Fa 5sWX=5P5F 55 = 150 70=1.5 Fa=1 $F = \frac{1.2(2/3 \times 1 \times 1.5)}{2.5} (5P5F)$ F = 2.5 PSF Load Smaller than Wh - therefore Windload rules. 2.5 × 12 × 20.5 × = 312 #

PROGRAM	: General GREENHOUSE RCED	Frame Analy CO.			====== TIME :		r 13 16:	PAGE NO. 1 00:59 2017 OB NO. : 1
NODE NO	Х	N O D A COORDINATE Y	S CODE	PX STI	UPPORT FF 1	CONDITIC PY STIFF	M S	
	its : Ft	Ft		Lb/In		Lb/In		n /Deg
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 22 23	0.00 41.50 0.00 41.50 0.00 41.50 6.12 11.87 16.31 25.18 29.62 35.37 6.12 11.87 20.75 29.62 35.37 16.31 25.18	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 F 0 FR 3 FR 6 FR					
ELEM NO	NE NODE	E L E M E PE NODE	NTINE ELEM LENGTH	F O R M A BETA ANGLE	PROP TYPE	ELEM TYPE	NE HINGE	PE HINGE
	: = = = = = = = = = = = =	Units		Deg		2	= = = = = = = = = =	
1 2 3 4 5 6 7 8 9 10 11 12 13 14	1 2 3 4 5 7 8 9 10 11 12 5 13 14	3 4 5 6 7 8 9 10 11 12 6 13 14 22	7.000 3.000 3.000 6.125 5.750 4.437 8.876 4.437 5.750 6.125 6.125 6.848 6.429 4.961	90.00 90.00 90.00 0.00 0.00 0.00 0.00 0.00 0.00 26.57 26.57 26.55	1 1 2 2 2 2 2 2 4 4 4	BEAM BEAM BEAM STRUT STRUT STRUT STRUT STRUT STRUT BEAM BEAM BEAM	Y Y Y Y Y Y	Ү Ү Ү Ү Ү Ү

PROGRAM WINANDY JOB : M RUN : M	IERCED	Frame Analy CO.	vsis v2.05		TIME :	Thu Apr	L	PAGE NO. 2 :01:04 2017 JOB NO. : 1
ELEM NO	NE NODE	ELEME PE NODE	ELEM LENGTH	F O R M BETA ANGLE	A T I O PROP TYPE	N ELEM TYPE	NE HINGE	PE HINGE
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33	23 16 17 3 17 7 8 11 12 7 8 9 10 11 12 22 23 22 23 22 23	16 17 6 13 4 13 14 16 17 14 22 15 15 15 23 16 9 10 15 15 15 15	4.960 6.429 6.848 8.618 3.063 5.938 3.063 8.266 9.285 11.284 11.284 9.285 8.266 8.156	-26.56 -26.57 -26.57 44.71 -44.71 90.00 90.00 90.00 45.92 61.45 66.84 113.16 118.55 134.08 -90.01 -90.00 26.57 153.43	4 4 4 4 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5	BEAM BEAM BEAM BEAM BEAM BEAM BEAM TRUSS TRUSS TRUSS TRUSS TRUSS TRUSS BEAM BEAM BEAM	Y Y Y Y Y Y Y	Ү Ү Ү Ү Ү Ү Ү Ү
PROP NO	SECT NAM	PROPE FION 4E	RTY I MODULU		M A T I	O N I		DIST
======	_ = = = = = = = = = = = = = = = = = = =	======== Units			======= In2	In		======= Ft
1 2 3 4 5	3 X 3 #3 2.375RND 2 X 2 2 1/2 FLAT		2.9e+ 2.9e+ 2.9e+ 2.9e+ 2.9e+	007 007 007	1.1 0.328 0.681 0.825 0.25	1 0.4 0.4	.55 .02 443 493 163	
	N O I LOAD LOAD CASE TYPE	DAL LC	======================================	FORM PY DY	ATIO M BET.	N A		
		Units		======= Lb Ft	Ft-: Deg		= = = = = = = = =	

PROGRAM : Gen WINANDY GREEN JOB : MERCED RUN : MERCED	eral Frame An HOUSE CO.		PAGE NO. 3 Apr 13 16:01:04 2017 JOB NO. : 1		
REC LOAD NO CASE	N O D A L LOAD TYPE	PX DX	I N F O R M PY DY	======================================	
Description : Node List : 1 1	5,6	0.00	-216.00	0.00	
Description : Node List : 2 1	DL 13,14,16,17 FORCE	0.00	-432.00	0.00	
Description : Node List : 3 1		0.00	-639.00	0.00	
Description : Node List : 4 2		0.00	-540.00	0.00	
Description : Node List : 5 2	LL 13,14,16,17 FORCE	0.00	-1080.00	0.00	
Description : Node List : 6 2		0.00	-799.00	0.00	
Description : Node List : 7 3		626.00	0.00	0.00	
Description : Node List : 8 3		314.00	0.00	0.00	
Description : Node List : 9 3		72.00	278.00	0.00	
	WL 13,14 FORCE	144.00	555.00	0.00	
	WL 15,6 FORCE	0.00	429.00	0.00	

PROGRAM : Gen WINANDY GREEN JOB : MERCED RUN : MERCED	nalysis v2.0	=======================================	TIME : Thu	PAGE NO. 4 Apr 13 16:01:04 2017 JOB NO. : 1
REC LOAD NO CASE	PX	INFORM PY DY	A T I O N M BETA	
Description : Node List : 12 3	0.00	857.00	0.00	
Description : Node List : 13 4	312.00	0.00	0.00	
Description : Node List : 14 1	0.00	-319.50	0.00	
Description : Node List : 15 2	0.00	-799.00	0.00	
Description : Node List : 16 3	144.00	555.00	0.00	

PROGRAN WINANDY JOB : M RUN : M	1 : 7 GR 1ERC 1ERC	Genera EENHOU ED ED	l Frame SE CO.	Anal	ysis v2.(05	TIME :	Thu Apr 13	PAGE NO. 5 16:01:04 2017 JOB NO. : 1		
	: = = =			===== D A L		5 P L A C E			# # 2 # 2 2 2 2 # # 2 2 # # #		
NODE NO	LOAD COMB					D		DY		ROTATION	
= = = = = = =	-		Units		========= n	======= In		Deg	= = = = = = = = = = = = = = = = = = = =		
LOAD CC	MBI	NATION	S:								
COMB 1	. : +		X CASE X CASE	1 2							
COMB 2	: + +	0.50	X CASE X CASE X CASE	1 2 3							
COMB 3	: +		X CASE X CASE	1 3							
COMB 4	: +		X CASE X CASE	1 4							
1		1 2 3 4		0.0 0.0 0.0 0.0	000 000	0.0000 0.0000 0.0000 0.0000		0.0000 0.0000 0.0000 0.0000			
2		1 2 3 4		0.0 0.0 0.0 0.0	000 000	0.0000 0.0000 0.0000 0.0000		0.0000 0.0000 0.0000 0.0000			
3		1 2 3 4		-0.3: 0.7 0.8: -0.1	781 938	-0.0147 -0.0035 0.0016 -0.0045		0.0000 0.0000 0.0000 0.0000			
4		1 2 3 4		0.3 0.8 0.7 0.1	834 677	-0.0147 -0.0031 0.0020 -0.0045		0.0000 0.0000 0.0000 0.0000			
5		1 2 3		-0.19 0.82 0.87	236	-0.0184 -0.0045 0.0018		0.0000 0.0000 0.0000			

WINANDY JOB : ME RUN : ME	GREENHOUSE RCED RCED			ME : Thu Apr 13	PAGE NO. 6 16:01:04 2017 JOB NO. : 1
======	==========		======================================	======================================	= = = = = = = = = = = = = = = = = = =
NODE NO	LOAD COMB	DX	DY	ROTATION	
	=======================================	-0.0491	-0.0056	0.0000	=============
6	1 2 3 4	0.1550 0.8697 0.8167 0.0491	-0.0184 -0.0034 0.0030 -0.0056	0.0000 0.0000 0.0000 0.0000	
7	1 2 3 4	-0.1026 0.8350 0.8699 -0.0329	-0.3811 -0.0911 0.0410 -0.1170	0.0000 0.0000 0.0000 0.0000	
8	1 2 3 4	-0.0565 0.8436 0.8627 -0.0183	-0.5238 -0.1137 0.0672 -0.1620	0.0000 0.0000 0.0000 0.0000	
9	1 2 3 4	-0.0257 0.8484 0.8570 -0.0084	-0.5369 -0.1068 0.0779 -0.1674	0.0000 0.0000 0.0000 0.0000	
10	1 2 3 4	0.0257 0.8550 0.8464 0.0084	-0.5369 -0.0990 0.0857 -0.1674	0.0000 0.0000 0.0000 0.0000	
11	1 2 3 4	0.0565 0.8598 0.8408 0.0183	-0.5238 -0.0852 0.0957 -0.1620	0.0000 0.0000 0.0000 0.0000	
12	1 2 3 4	0.1026 0.8658 0.8309 0.0329	-0.3811 -0.0455 0.0866 -0.1170	0.0000 0.0000 0.0000 0.0000	

PROGRAM	: General GREENHOUSE RCED	Frame Analysis v CO.	/2.05	4E : Thu Apr 13	PAGE NO. 7 16:01:04 2017 JOB NO. : 1
NODE	LOAD		I S P L A C E M H		
NO =========	COMB ========	DX ================	DY	ROTATION	==================
13	1 2 3 4	0.0061 0.8614 0.8585 0.0003	-0.3813 -0.0915 0.0407 -0.1169	0.0000 0.0000 0.0000 0.0000	
14	1 2 3 4	0.0527 0.8661 0.8473 0.0150	-0.5291 -0.1158 0.0671 -0.1634	0.0000 0.0000 0.0000 0.0000	
15	1 2 3 4	0.0000 0.8430 0.8430 0.0000	-0.5009 -0.0904 0.0811 -0.1579	0.0000 0.0000 0.0000 0.0000	
16	1 2 3 4	-0.0527 0.8355 0.8544 -0.0150	-0.5291 -0.0849 0.0980 -0.1634	0.0000 0.0000 0.0000 0.0000	
17	1 2 3 4	-0.0061 0.8505 0.8534 -0.0003	-0.3813 -0.0448 0.0874 -0.1169	0.0000 0.0000 0.0000 0.0000	
22	1 2 3 4	0.0413 0.8577 0.8431 0.0120	-0.5475 -0.1100 0.0786 -0.1704	0.0000 0.0000 0.0000 0.0000	
23	1 2 3 4	-0.0413 0.8320 0.8466 -0.0120	-0.5475 -0.1021 0.0864 -0.1704	0.0000 0.0000 0.0000 0.0000	

PROGRAM WINANDY JOB : MH RUN : MH	: Genei GREENHO ERCED ERCED	ral Fram	e Analysis			Thu Apr 13 16:01:	E NO. 8
ELEM NO	LOAD COMB	NODE NO	E L E M AXIAL	E N T R E P SIGN CONVENTIO SHEAR	MOMENT	MAX MOM/DEFL	
			: Lb	Lb	Lb-Ft	Lb-Ft /In	======= Ft
LOAD CON	IBINATIO	ONS:					
COMB 1) X CASE) X CASE	1 2				
COMB 2	+ 0.50) X CASE) X CASE) X CASE	1 2 3				
COMB 3) X CASE) X CASE	1 3				
COMB 4) X CASE) X CASE	1 4				
1	1	1 -5 3 -5	5617.4703 5617.4703	-306.7130 -306.7130	1073.495 -1073.495	7 7 -0.0323	1.48
	2		1343.7121 1343.7121	709.9274 709.9274	-2484.746		1.48
	3	1 3	605.5273 605.5273	815.5157 815.5157	-2854.3048		1.48
	4		L718.9915 L718.9915	-95.5366 -95.5366	334.3779 -334.3779		5.52
2	1		5617.5297 5617.5297	306.7130 306.7130	-1073.495 1073.495		5.52
	2		L199.7879 L199.7879	806.0726 806.0726	-2821.2540 2821.2540		5.52
	3	2 4	749.4727 749.4727	700.4843 700.4843	-2451.6952 2451.6952		1.48
	4		L719.0085 L719.0085	95.5366 95.5366	-334.3779 334.3779		1.48

PROGRAM WINANDY JOB : ME RUN : ME	: Gene GREENH RCED RCED	ral Fr OUSE C	ame Analysis O.		TIME :	Thu Apr 13	PAGE NO. 9 16:01:04 2017 JOB NO. : 1
=======	=====	=====	========== E L E M	======================================	======================================		= = = = = = = = = = = = = = = = = = =
ELEM	LOAD	NODE		SIGN CONVENT		DESIGNERS	
NO	COMB	NO	AXIAL	SHEAR	MOMENT		A/DEFL DIST
	======			============	===========		= = = = = = = = = = = = = = = = = = = =
3	1	3	-3235.7325	2099.3803	-3149.070	4	
		5	-3235.7325	2099.3803	3149.070	4 0.0	0.63
	2	3	-904.0285	528.1072	-792.160	Q	
	2	5	-904.0285	528.1072	792.160		0.63
	3	3 5	220.6811	-199.2660	298.899		
		5	220.6811	-199.2660	-298.899	0 0.0	0017 2.37
	4	3	-986.3133	644.6340	-966.951	0	
		5	-986.3133	644.6340	966.951	0 -0.0	054 2.37
4	1	4	-3235.7809	-2099.3915	3149.087	2	
		6	-3235.7809	-2099.3915	-3149.087)174 2.37
	2	4 6	-243.8476 -243.8476	-159.6432 -159.6432	239.464 -239.464		013 2.37
		0	-243.0470	-159.0432	-239.464	/ 0.0	1013 2.37
	3	4	880.8793	567.7340	-851.601	0	
		6	880.8793	567.7340	851.601	0 0.0	0.63
	4	4	-986.3272	-644.6372	966.955	7	
		- 6	-986.3272	-644.6372	-966.955		0.63
-	-	F		0 0000	0 000	•	
5	1	5 7	6783.8630 6783.8630	0.0000 0.0000	0.000		
		,	0703.0050	0.0000	0.000	0	
	2	5	1468.4942	0.0000	0.000		
		7	1468.4942	0.0000	0.000	0	
	3	5	-872.9695	0.0000	0.000	0	
	-	7	-872.9695	0.0000	0.000		
	_	_					
	4	5 7	2100.9355	0.0000	0.000		
		1	2100.9355	0.0000	0.000	U	
6	1	7	6358.2150	0.0000	0.000		
		8	6358.2150	0.0000	0.000	υ	
	2	7	1185.5663	0.0000	0.000	0	
		8	1185.5663	0.0000	0.000		

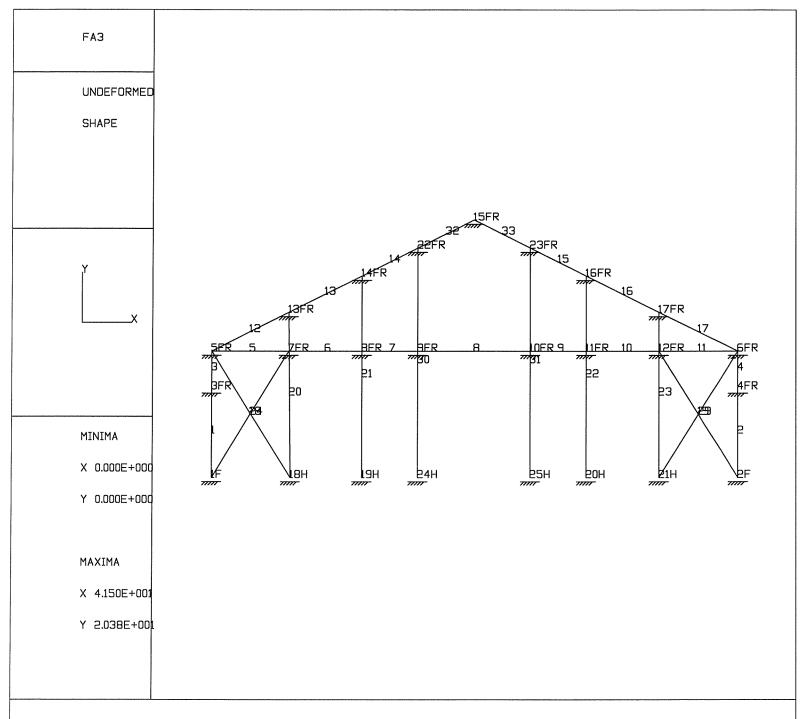
WINANDY JOB : MI RUN : MI	GREENH ERCED ERCED	IOUSE C	ame Analysis	 v2.05		PAGE NO. 10 Apr 13 16:01:04 2017 JOB NO. : 1
ELEM NO	LOAD COMB	NODE NO	E L E M	E N T R E P C SIGN CONVENTION SHEAR	I : BEAM DES	GIGNERS MAX MOM/DEFL DIST
========				=======================================		·
	3	7 8	-992.5228 -992.5228	0.0000 0.0000	0.0000 0.0000	
	4	7 8	2002.0368 2002.0368	0.0000 0.0000	0.0000 0.0000	
7	1	8 9	5506.0733 5506.0733	0.0000 0.0000	0.0000 0.0000	
	2	8 9	864.2762 864.2762	0.0000 0.0000	0.0000 0.0000	
	3	8 9	-1005.4830 -1005.4830	0.0000 0.0000	0.0000 0.0000	
	4	8 9	1766.5548 1766.5548	0.0000 0.0000	0.0000 0.0000	
8	1	9 10	4585.0431 4585.0431	0.0000 0.0000	0.0000 0.0000	
	2	9 10	589.4953 589.4953	0.0000 0.0000	0.0000 0.0000	
	3	9 10	-948.6697 -948.6697	0.0000 0.0000	0.0000 0.0000	
	4	9 10	1508.7132 1508.7132	0.0000 0.0000	0.0000 0.0000	
9	1	10 11	5505.9809 5505.9809	0.0000 0.0000	0.0000 0.0000	
	2	10 11	859.9116 859.9116	0.0000 0.0000	0.0000 0.0000	
	3	10 11	-1009.8214 -1009.8214	0.0000 0.0000	0.0000 0.0000	
	4	10 11	1766.5148 1766.5148	0.0000 0.0000	0.0000 0.0000	

	: Gene GREENH ERCED	ral Fr	ame Analysis		======= TIME :	Thu Apr	13 16:01:	E NO. 11 04 2017 NO. : 1
ELEM NO	LOAD COMB	NODE NO	E L E M AXIAL	E N T R E P O SIGN CONVENTION SHEAR		DESIGNEN MAX	RS MOM/DEFL	DIST
10	1	11 12	6358.3297 6358.3297	0.0000 0.0000	0.000 0.000			
	2	11 12	822.0550 822.0550	0.0000 0.0000	0.000 0.000			
	3	11 12	-1356.0750 -1356.0750	0.0000 0.0000	0.000			
	4	11 12	2002.0697 2002.0697	0.0000 0.0000	0.000 0.000			
11	1	12 6	6783.9702 6783.9702	0.0000 0.0000	0.000			
	2	12 6	501.7582 501.7582	0.0000 0.0000	0.000 0.000			
	3	12 6	-1839.7437 -1839.7437	0.0000 0.0000	0.000 0.000			
	4	12 6	2100.9663 2100.9663	0.0000 0.0000	0.000 0.000			
12	1	5 13	-5298.9069 -5298.9069	122.6298 122.6298	-419.895 419.895		0.0382	1.45
	2	5 13	-1497.6320 -1497.6320	29.2707 29.2707	-100.225 100.225		0.0091	1.45
	3	5 13	328.2951 328.2951	-13.2423 -13.2423	45.342 -45.342		0.0041	5.40
	4	5 13	-1647.0527 -1647.0527	37.6037 37.6037	-128.758 128.758		-0.0117	5.40
13	1	13 14	-7578.7157 -7578.7157	57.1894 57.1894	-183.826 183.826		-0.0147	5.07

PROGRAM WINANDY JOB : ME RUN : ME	: Gene GREENH ERCED ERCED	ral Fr OUSE C	ame Analysis O.		TIME :	Thu Apr	PAGE 13 16:01: JOB	NO. 12 04 2017 NO. : 1
ELEM	LOAD	NODE	E L E M	ENT REPO SIGN CONVENTION	RTS EBEAM	DESIGNER		= = = = = = = =
NO ========	COMB	NO =====	AXIAL	SHEAR ====================================	MOMENT		MOM/DEFL	DIST ======
	2	13 14	-2053.3593 -2053.3593	8.8951 8.8951	-28.592 28.592		0.0023	5.07
	3	13 14	561.0981 561.0981	-10.6981 -10.6981	34.387 -34.387		0.0028	1.36
	4	13 14	-2349.8008 -2349.8008	18.0030 18.0030	-57.867 57.867		0.0046	1.36
14	1	14 22	-7403.5344 -7403.5344	9.2078 9.2078	-22.841 22.841		0.0011	3.91
	2	14 22	-1970.6976 -1970.6976	-7.2398 -7.2398	17.959 -17.959		0.0009	1.05
	3	14 22	565.5531 565.5531	-9.8668 -9.8668	24.476 -24.476		0.0012	3.91
	4	14 22	-2331.0329 -2331.0329	3.9537 3.9537	-9.808 9.808		0.0005	1.05
15	1	23 16	-7403.9859 -7403.9859	-9.1830 -9.1830	22.776 -22.776		0.0011	3.91
	2	23 16	-1815.5678 -1815.5678	-13.8381 -13.8381	34.321 -34.321		0.0016	3.91
	3	23 16	720.8393 720.8393	-11.2199 -11.2199	27.828 -27.828		0.0013	3.91
	4	23 16	-2331.1718 -2331.1718	-3.9465 -3.9465	9.788 -9.788		0.0005	1.05
16	1	16 17	-7578.8373 -7578.8373	-57.1886 -57.1886	183.824 -183.824		0.0147	5.07
	2	16 17	-1416.9576 -1416.9576	-15.8876 -15.8876	51.068 -51.068		0.0041	5.07
	3	16 17	1197.5432 1197.5432	3.7053 3.7053	-11.910 11.910		0.0010	1.36

~

	: Gene GREENH ERCED ERCED	ral Fr OUSE C	ame Analysis O.	v2.05		PAGE 1 Apr 13 16:01:	NO. 13
ELEM NO	LOAD COMB	NODE NO	E L E M AXIAL	E N T R E P SIGN CONVENTIC SHEAR	MOMENT	MAX MOM/DEFL	DIST
	4	16 17	-2349.8357 -2349.8357		57.8671 -57.8671	-0.0046	1.36
17	1	17 6	-5299.0143 -5299.0143	-122.6301 -122.6301	419.8967 -419.8967	0.0382	5.40
	2	17 6	-389.5587 -389.5587	-14.0976 -14.0976	48.2715 -48.2715	0.0044	5.40
	3	17 6	1436.4067 1436.4067	28.4155 28.4155	-97.2973 97.2973	0.0088	1.45
	4	17 6	-1647.0836 -1647.0836	-37.6038 -37.6038	128.7590 -128.7590	0.0117	5.40
18	1	3 13	-3385.5516 -3385.5516	0.0000 0.0000	0.0000 0.0000		
	2	3 13	-624.9939 -624.9939	0.0000 0.0000	0.0000		
	3	3 13	547.0446 547.0446	0.0000	0.0000		
	4	3 13	-1041.4748 -1041.4748	0.0000 0.0000	0.0000 0.0000		
19	1	17 4	-3385.5674 -3385.5674	0.0000	0.0000 0.0000		
	2	17 4	-1358.8336 -1358.8336	0.0000 0.0000	0.0000		
	3	17 4	-186.7896 -186.7896	0.0000 0.0000	0.0000 0.0000		
	4	17 4	-1041.4793 -1041.4793	0.0000 0.0000	0.0000 0.0000		


PROGRAM WINANDY JOB : ME RUN : ME	: Gene GREENH ERCED ERCED	eral Fr NOUSE C	ame Analysis O.	v2.05		PAGE u Apr 13 16:01:	E NO. 14
=======			ELEM		ORTS		: = = = = = = =
ELEM NO ========	LOAD COMB	NODE NO	AXIAL	SIGN CONVENTIC SHEAR	MOMENT	MAX MOM/DEFL	DIST
20	1	7	-90.9862	337.5425	-516.9464		
2.0	<u>.</u>	13	-90.9862	337.5425	516.9464	0.0105	0.65
	2	7	-207.5342	81.9644	-125.5285		
		13	-207.5342	81.9644	125.5285	0.0025	0.65
	3	7	-160.0280	-35.4081	54.2275	0 0011	0.40
		13	-160.0280	-35.4081	-54.2275	0.0011	2.42
	4	7 13	4.0262 4.0262	102.7975 102.7975	-157.4344 157.4344	-0.0032	2.42
		± 0	1.0102	102.1919	107.4044	0.0032	2.12
21	1	8	-1480.5336	46.5252	-138.1333		
		14	-1480.5336	46.5252	138.1333	0.0105	1.25
	2	8	-572.8169	9.5979	-28.4961		
		14	-572.8169	9.5979	28.4961	0.0022	1.25
	3	8 14	-35.8695 -35.8695	-6.5578	19.4702	0 0015	4 60
				-6.5578	-19.4702	0.0015	4.68
	4	8 14	-406.6389 -406.6389	14.2138 14.2138	-42.2007 42.2007	0.0032	1.25
			100.0000	11.2130	12.2007	0.0032	1.20
22	1	11	-1481.2502	-46.5240	138.1298		
		16	-1481.2502	-46.5240	-138.1298	-0.0105	1.25
	2	11	88.6100	-10.3487	30.7251		
		16	88.6100	-10.3487	-30.7251	-0.0023	1.25
	3	11 16	625.8025 625.8025	5.8066	-17.2399 17.2399	0 0010	4 60
				5.8066	17.2399	-0.0013	4.68
	4	11 16	-406.8652 -406.8652	-14.2134 -14.2134	42.1996 -42.1996	0.0032	4.68
				unar va e Martinta hy⊄ dy	ರ್ಕಾರ್ ಕಲೇಂಬ್ ಬ್ ಸಿ		1.00
23	1	12	-90.9804	-337.5406	516.9434		
		17	-90.9804	-337.5406	-516.9434	0.0105	2.42
	2	12	379.8950	-47.5705	72.8543		
		17	379.8950	-47.5705	-72.8543	0.0015	2.42

PROGRAM WINANDY JOB : ME RUN : ME	: Gene GREENH ERCED ERCED	eral Fra IOUSE CO	ame Analysis D.	======================================		PAGE 1 Apr 13 16:01:	NO. 15
= = = = = = = = =	2	: == == == = =	E L E M	======================================	======================================	================	= = = = = = =
ELEM		NODE		SIGN CONVENTIO	N : BEAM DES		
NO ========	COMB	NO	AXIAL	SHEAR ==================	MOMENT	,	DIST ======
	3	12 17	427.3991 427.3991	69.8013 69.8013	-106.9006 106.9006	0.0022	0.65
						0.0022	0.05
	4	12 17	$4.0279 \\ 4.0279$	-102.7969 -102.7969		-0.0032	0.65
		Τ,	4.0279	-102.7909	-10/.4000	-0.0032	0.05
24	1	7	126.6533	0.0000	0.0000		
24	<u> </u>	14	126.6533	0.0000	0.0000		
	2	-		0 0000	0 0000		
	4	7 14	288.8889 288.8889	0.0000 0.0000	0.0000 0.0000		
	2	_					
	3	7 14	222.7599 222.7599	0.0000 0.0000	0.0000 0.0000		
	4	7 14	-5.6046 -5.6046	0.0000 0.0000	0.0000 0.0000		
		± 1	5.0040	0.0000	0.0000		
25	1	8	1685.5259	0.0000	0.0000		
20	<u></u>	22	1685.5259	0.0000	0.0000		
	2	0		0 0000	0 0000		
	2	8 22	652.1282 652.1282	0.0000 0.0000	0.0000 0.0000		
	2	0					
	3	8 22	40.8360 40.8360	0.0000 0.0000	0.0000 0.0000		
	4	8 22	462.9415 462.9415	0.0000 0.0000	0.0000 0.0000		
26	1	9	2314.5413	0.0000	0.0000		
20	<u></u>	15	2314.5413	0.0000	0.0000		
	2	9	694.9785	0 0000	0 0000		
	4	9 15	694.9785	0.0000 0.0000	0.0000 0.0000		
	2	0	120 6920	0 0000	0 0000		
	3	9 15	-138.6732 -138.6732	0.0000 0.0000	0.0000 0.0000		
	4	0					
	4	9 15	647.2380 647.2380	0.0000 0.0000	0.0000 0.0000		

ROGRAM	: Gene GREENH ERCED	ral Fra	ame Analysis			Thu Apr	13 16:01:	NO. 16 04 2017 NO. : 1
===== ELEM NO	LOAD COMB	NODE NO	E L E M AXIAL	E N T R E P O SIGN CONVENTION SHEAR		====== DESIGNE MAX	,	DIST
=====	======		=============		=======		= = = = = = = = = =	
27	1	10 15	2313.6495 2313.6495	0.0000 0.0000	0.000 0.000			
	2	10 15	677.9449 677.9449	0.0000 0.0000	0.000 0.000			
	3	10 15	-155.4035 -155.4035	0.0000 0.0000	0.000 0.000			
	4	10 15	646.9527 646.9527	0.0000 0.0000	0.000 0.000			
28	1	11 23	1686.2550 1686.2550	0.0000 0.0000	0.000			
	2	11 23	-100.8736 -100.8736	0.0000 0.0000	0.000 0.000			
	3	11 23	-712.4135 -712.4135	0.0000 0.0000	0.000 0.000			
	4	11 23	463.1753 463.1753	0.0000 0.0000	0.000 0.000			
29	1	12 16	126.6453 126.6453	0.0000 0.0000	0.000 0.000			
	2	12 16	-528.8161 -528.8161	0.0000 0.0000	0.000 0.000			
	3	12 16	-594.9422 -594.9422	0.0000 0.0000	0.000 0.000			
	4	12 16	-5.6068 -5.6068	0.0000 0.0000	0.000 0.000			
30	1	22 9	-2128.0232 -2128.0232	11.0094 11.0094	-44.896 44.896		-0.0064	6.43

WINANDY JOB : ME RUN : ME	: Gene GREENH ERCED ERCED	ral Fr OUSE C	ame Analysis O.	 v2.05	TIME : Th	u Apr 13 16:01: JOB	NO. 17 04 2017 NO. : 1
ELEM NO	LOAD COMB	NODE NO	E L E M	E N T R E P C SIGN CONVENTION SHEAR			DIST
				=======================================		,	
	2	22 9	-638.9736 -638.9736	1.5325 1.5325	-6.2494 6.2494	-0.0009	6.43
	3	22 9	127.4980 127.4980	-2.2905 -2.2905	9.3405 -9.3405	-0.0013	1.72
	4	22 9	-595.0801 -595.0801	3.3636 3.3636	-13.7166 13.7166	-0.0020	6.43
31	1	23 10	-2127.2047 -2127.2047	-11.0067 -11.0067	44.8854 -44.8854	0.0064	6.43
	2	23 10	-623.3129 -623.3129	-3.7886 -3.7886	15.4500 -15.4500	-0.0022	1.72
	3	23 10	142.8804 142.8804	0.0334 0.0334	-0.1360 0.1360		
	4	23 10	-594.8182 -594.8182	-3.3628 -3.3628	13.7133 -13.7133	0.0020	6.43
32	1	22 15	-6462.7109 -6462.7109	-48.9032 -48.9032	121.3030 -121.3030	-0.0058	1.05
	2	22 15	-1775.6488 -1775.6488	-19.6241 -19.6241	48.6771 -48.6771	0.0023	3.91
	3	22 15	419.9218 419.9218	-1.8974 -1.8974	4.7064 -4.7064	0.0002	3.91
	4	22 15	-2071.5698 -2071.5698	-13.4497 -13.4497	33.3616 -33.3616	0.0016	3.91
33	1	23 15	-6462.0615 -6462.0615	48.8440 48.8440	-121.1778 121.1778	-0.0058	3.91
	2	23 15	-1852.1315 -1852.1315	12.5193 12.5193	-31.0594 31.0594	-0.0015	3.91
	3	23 15	343.2187 343.2187	-5.1866 -5.1866	12.8675 -12.8675	-0.0006	1.05

PROGI WINAN JOB : RUN :	RAM VDY : MI : MI	: GR ERC ERC	Gene: EENHO ED ED	ral DUS	Fra E CO	me .	Ana	-	s v2	.05				TIM	Ξ:	Thu	ı Apı	r 13	3	P 16: J	AGE 01: OB	NO 04 2 NO.	. 18 2017 : 1
===== ELEN NO ======	1	L C	OAD OMB	NO N	DE O		E AX	L E M IAL	I E SI	N T GN S	CON HEA	R E VEN R	P O CION	R 7 : 1 MOI	f s beam ment	DES	IGNI MAX	ERS MC	DM	/DE	FL	DIS	ST.
			4	23 15				3609 3609							3.324 3.324			-0.	. 0	016		3.9	91
=====	:==:	===	=====	===		=== R	=== E	===== A	=== C	=== T	=== I	==== 1 0	I S			====	===:	====	= =:	===	= = =	: == == == =	====
NODE NO			LOAI COME	3				PX				ЪЛ				MOM	IENT						
=====	:==:	===	== == == == =	==		=== its			===	===	===		.===:		====		==== -Ft	====	= = :	= = =		======	= == ==
LOAD	CON	/BI	NATIC	ONS	:																		
COMB	1		1.00 1.00				1 2																
COMB	2	+	1.00 0.50 1.00) X	CASI	E 2	1 2 3																
COMB	3		1.00 1.00				1 3																
COMB	4		1.00 1.00				1 1																
	1		1 2 3 4			-1(-1:)23 L29	.7130 .9274 .5157 .4634			134 -6	17.4 43.7 05.5 18.9	121 273			2484 2854	.495 .746 .304 .377	50 18					
	2		1 2 3 4			- 8 - 7	306 700	.7130 .0726 .4843 .5366			11: -74	17.5 99.7 49.4 19.0	879 727		4	2821 2451	.495 .254 .695 .377	10 52					

NOTES :

JOB ID: MERCED

RUN ID: MERCEDGABLE

PROGRAM : General Frame Analysis v2.05 WINANDY GREENHOUSE CO. JOB : MERCED RUN : MERCEDGABLE PAGE NO. 1 TIME : Thu Apr 13 17:38:59 2017 JOB NO. : 1								
NODE NO	NODAL X	N O D A L COORDINATES Y	I N F CODE	O R M A S PX STI	UPPORT	EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE		
	ts : Ft	 Ft		Lb/In		Lb/In	Lb-I:	n /Deg
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	0.000 41.500 0.000 41.500 0.000 41.500 6.125 11.875 16.312 25.188 29.625 35.375 6.125 11.875 20.750 29.625	0.000 7.000 10.000 13.063 15.938 20.375	F F FRR FR FR FR FR FR FR FR FR FR FR FR					
16 17 18 19 20 21 22 23 24 25	29.625 35.375 6.250 11.875 29.625 35.375 16.313 25.188 16.313 25.188	13.063	FR FR H H FR FR H H					100 100 100 100
ELEM NO	NE NODE	NODE LEN	======== ' I N F 'EM 'GTH	ORMA BETA ANGLE	T I O PROP TYPE	======= N ELEM TYPE	NE HINGE	PE HINGE
	=========	Units : F	'======= 't	Deg		= = = = = = = = = = =		
1 2 3 4 5 6 7 8	1 2 3 4 5 7 8 9	4 7 5 3 6 3 7 6 8 5 9 4	.000 .000 .000 .125 .750 .437 .876	90.0090.0090.0090.00 $0.000.000.00$	1 1 1 2 2 2 2	BEAM BEAM BEAM STRUT STRUT STRUT STRUT	Ү Ү Ү Ү	Ү Ү Ү Ү

WINANDY JOB : ME RUN : ME	: General GREENHOUS ERCED ERCEDGABLE	Frame Ana E CO.	lysis v2.05		TIME :	Thu Apr	13 17: J	PAGE NO. 2 39:04 2017 OB NO. : 1
ELEM		ELEM	ENT INF	ORM	ATIO	N		
NO	NE NODE	PE NODE	ELEM LENGTH	BETA ANGLE	PROP TYPE	ELEM TYPE	NE HINGE	PE HINGE
						=======		
9	10	11	4.437	0.00	2	STRUT	Y	Y
10	11	12	5.750	0.00	2	STRUT	Y	Y
11	12	6	6.125	0.00	2	STRUT	Y	Y
12	5	13	6.848	26.57	4	BEAM		
13	13	14	6.429	26.57	4	BEAM		
14	14	22	4.961	26.55	4	BEAM		
15	23	16		-26.56	4	BEAM		
16	16	17		-26.57	4	BEAM		
17	17	6		-26.57	4	BEAM		
18	5	18		-57.99	6	BEAM	Y	Y
19	6	21		121.49	6	BEAM	Y	Y
20	18	13	13.064	90.55	3	BEAM		
21	19	14	15.938	90.00	3	BEAM		
22	20	16	15.938	90.00	3	BEAM		
23	21	17	13.063	90.00	3	BEAM		
24	1	7	11.727	58.51	6	BEAM	Y	Y
25	8	22	9.285	61.45	5	TRUSS	Y	Y
26	9	15	11.284	66.84	5	TRUSS	Y	Y
27	10	15		113.16	5	TRUSS	Y	Y
28	11	23		118.55	5	TRUSS	Y	Y
~ ~	12	2	11.727	-58.51	6	BEAM	Y	Y
29		~ ^	18.156	-90.00	3	BEAM		
30	22	24	10.100					
30 31	23	24 25		-90.00	3	BEAM		
30 31 32	23 22		18.156	-90.00 26.57	3 4	BEAM BEAM		
30 31	23	25	18.156 4.961					
30 31 32 33	23 22 23	25 15 15	18.156 4.961 4.962	26.57 153.43	4 4	BEAM BEAM		
30 31 32 33	23 22 23	25 15 15	18.156 4.961 4.962	26.57 153.43	4 4	BEAM BEAM		

NO	NAME		MODULUS	AREA	I	DIST	
		Units :	Lb/In 2	In2	=========== In4	======================================	
2 3 4 5	2.375RND 2 X 2 2 1/2 FLAT		2.9e+007 2.9e+007 2.9e+007 2.9e+007 2.9e+007	1.1 0.328 0.681 0.825 0.25	1.55 1.02 0.443 0.493 0.163		
6	2 1/2 FLAT		2.9e+007	0.25	0.163		

PROGRAM : Get WINANDY GREEN JOB : MERCED RUN : MERCED	GABLE				 Apr 13	PAGE NO. 3 17:39:04 2017 JOB NO. : 1
REC LOAD NO CASE	N O D A L LOAD TYPE	L O A D PX DX	INFORM PY .DY	A T I O N M BETA		
		======================================	Lb Ft	Ft-Lb Deg	= == == == == == := :	
Description : Node List : 1 1		0.00	-216.00	0.00		
Description : Node List : 2 1		0.00	-432.00	0.00		
Description : Node List : 3 1		0.00	-639.00	0.00		
Description : Node List : 4 2	LL 5,6 FORCE	0.00	-540.00	0.00		
Description : Node List : 5 2		0.00	-1080.00	0.00		
Description : Node List : 6 2		0.00	-799.00	0.00		
Description : Node List : 7 3		626.00	0.00	0.00		
Description : Node List : 8 3		314.00	0.00	0.00		
Description : Node List : 9 3	WL 5,15 FORCE	72.00	278.00	0.00		
Description : Node List : 10 3		144.00	555.00	0.00		

PROGRAM : Gen WINANDY GREEN JOB : MERCED RUN : MERCEDG	HOUSE CO.	analysis v2.	======================================	TIME : Thu	PAGE NO. 4 Apr 13 17:39:04 2017 JOB NO. : 1
REC LOAD NO CASE	======================================	L O A D PX DX	INFORM PY DY	A T I O N M BETA	
Description : Node List : 11 3	15,6	0.00	429.00	0.00	
Description : Node List : 12 3		0.00	857.00	0.00	
Description : Node List : 13 4		312.00	0.00	0.00	
Description : Node List : 14 1	22,23	0.00	-319.50	0.00	
Description : Node List : 15 2		0.00	-799.00	0.00	
Description : Node List : 16 3		144.00	555.00	0.00	

PROGRAM : Ge WINANDY GREI JOB : MERCEI RUN : MERCEI	eneral Frame ENHOUSE CO. D DGABLE	Analysis v2.05	======================================	PAGE NO. 5 Thu Apr 13 17:39:04 2017 JOB NO. : 1
			L A C E M E N T	s
NO C	LOAD COMB	DX	DY	ROTATION
	Units		 In	Deg
LOAD COMBINA	ATIONS:			
	1.00 X CASE 1.00 X CASE	1 2		
+ (1.00 X CASE 0.50 X CASE 1.00 X CASE	1 2 3		
	1.00 X CASE 1.00 X CASE	1 3		
	1.00 X CASE 1.00 X CASE	1 4		
1	1 2 3 4	0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000
2	1 2 3 4	0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000
3	1 2 3 4	-0.0251 0.1069 0.1140 -0.0109	-0.0047 0.0029 0.0043 -0.0018	0.0000 0.0000 0.0000 0.0000
4	1 2 3 4	0.0246 0.0453 0.0384 0.0108	-0.0046 -0.0032 -0.0017 -0.0018	0.0000 0.0000 0.0000 0.0000
5	1 2 3	-0.0271 0.0613 0.0689	-0.0067 0.0041 0.0062	0.0000 0.0000 0.0000

WINANDY JOB : ME	GREENHOUSE	Frame Analysis CO.	=====================================	TIME : Thu Apr 13	PAGE NO. 6 17:39:04 2017 JOB NO. : 1
========	=========	NODAL	 D I S P L A C E	======================================	=================
NODE NO	LOAD COMB	DX	DY	ROTATION	
	===========		=======================================	=======================================	=======================================
	4	-0.0117	-0.0025	0.0000	
6	1	0.0266	-0.0066	0.0000	
	2	0.0489	-0.0045	0.0000	
	3	0.0414	-0.0025	0.0000	
	4	0.0117	-0.0025	0.0000	
7	1	-0.0192	0.0117	0.0000	
	2	0.0594	-0.0364	0.0000	
	3	0.0649	-0.0397	0.0000	
	4	-0.0083	0.0051	0.0000	
8	1	-0.0117	-0.0278	0.0000	
0	2	0.0577	0.0011	0.0000	
	3	0.0611	0.0096	0.0000	
	4	-0.0050	-0.0107	0.0000	
9	1	-0.0060	-0.0950	0.0000	
2	2	0.0564	0.0067	0.0000	
	3	0.0581	0.0335	0.0000	
	4	-0.0025	-0.0413	0.0000	
1.0	1			0,0000	
10	1 2	0.0055 0.0537	-0.0950 0.0029	0.0000 0.0000	
	3	0.0522	0.0298	0.0000	
	4	0.0025	-0.0413	0.0000	
11	1	0.0112	-0.0277	0.0000	
	2 3	0.0524 0.0493	-0.0073 0.0012	0.0000 0.0000	
	4	0.0050	-0.0107	0.0000	
12	1	0.0186	0.0114	0.0000	
	2	0.0507	0.0311	0.0000	
	3 4	0.0455 0.0082	0.0279 0.0050	0.0000 0.0000	
		0.0002	0.0050	0.0000	

WINANDY (JOB : ME	: General I GREENHOUSE	Frame Analysi:	s v2.05	TIME : Thu Apr 1	PAGE NO. 7 3 17:39:04 2017 JOB NO. : 1
========	=======================================	======================================	DISPLACE	 M E N T S	
NODE NO	LOAD COMB	DX	DY	ROTATION	
	= = = = = = = <u>-</u>	=======================================	=======================================		================
13	1	-0.0298	-0.0122	0.0000	
	2	0.0654	-0.0032	0.0000	
	3	0.0735	0.0011	0.0000	
	4	-0.0136	-0.0035	0.0000	
14	1	-0.0337	-0.0146	0.0000	
	2	0.0660	-0.0047	0.0000	
	3	0.0751	0.0005	0.0000	
	4	-0.0156	-0.0042	0.0000	
15	1	-0.0003	-0.0975	0.0000	
	2	0.0595	0.0054	0.0000	
	3	0.0596	0.0329	0.0000	
	4	0.0000	-0.0423	0.0000	
16	1	0.0331	-0.0146	0.0000	
	2	0.0538	-0.0012	0.0000	
	3	0.0450	0.0040	0.0000	
	4	0.0155	-0.0042	0.0000	
17	1	0.0293	-0.0120	0.0000	
	2	0.0523	-0.0009	0.0000	
	3	0.0445	0.0034	0.0000	
	4	0.0136	-0.0034	0.0000	
18	1	0.0000	0.0000	0.0161	
10	2	0.0000	0.0000	-0.0352	
	3	0.0000	0.0000	-0.0352	
	4	0.0000	0.0000	0.0074	
10	7	0.000	2 2000	0.0140	
19	1	0.0000	0.0000	0.0148	
	2 3	0.0000 0.0000	0.0000	-0.0290	
	3 4	0.0000	0.0000 0.0000	-0.0330 0.0069	
2.0	7				
20	1 2	0.0000	0.0000	-0.0146	
	2	0.0000	0.0000	-0.0237	

PROGRA WINANI JOB : RUN :	M Y MI MI	: Gene GREENI ERCED ERCEDGA	eral HOUS ABLE	Fram E CO.	e Analy		========== g v2.05		TIME :	Thu Apı	= c 13	17:39:	GE NO. 8 04 2017 NO. : 1
=====	= == :	=====	= == == ==		====== D A L	====	======================================	===== A C E	======== M E N T	======= S		======	=======
NODE NO		LOZ CON	ſΒ		D۶	ζ		DY		ROTATIO	ON		
	= == =		==== 3 4		0.00 0.00	000	0	====== .0000 .0000		-0.0198 -0.0068		= = = = =	
21	-		1 2 2		0.00	000	0	.0000		-0.0158	2		
			3 4		0.00			.0000 .0000		-0.0240 -0.0073			
22	2		1 2 3 4		-0.03 0.06 0.07 -0.01	544 748	- 0 0	.0133 .0025 .0021 .0040		0.0000 0.0000 0.0000 0.0000)		
23			1 2 3 4		0.03 0.05 0.04 0.01	17 16	- 0 - 0	.0133 .0077 .0030 .0040		0.0000 0.0000 0.0000 0.0000)		
ELEM NO		LOAD COMB	=== NO N	0	AXIA		I E N T R SIGN CONVI SHEAR		R T S E BEAM MOMENT	DESIGNE MAX		:====== I/DEFL	DIST
				===== Units		===	Lb		Lb-Ft	Lb-	==== Ft /	 In	-====== Ft
LOAD C	OM	IBINATI	ONS	:									
COMB		: 1.0 + 1.0			1 2								
COMB	2		0 X	CASE CASE CASE	1 2 3								
COMB	3	: 1.0 + 1.0		CASE CASE	1 3								
COMB		: 1.0 + 1.0		CASE CASE	1 4								

PROGRAM WINANDY JOB : ME RUN : ME	: Gene GREENH ERCED ERCEDGA	ral Fr OUSE C BLE	ame Analys:	ls v2.05	TIME : '	Thu Apr 13 17:39 JOB	GE NO. 9 :04 2017 NO. : 1
ELEM	LOAD	NODE	ELE	MENT REE SIGN CONVENTI	PORTS ION: BEAM I		
NO ========	COMB	NO ======	AXIAL	SHEAR	MOMENT	MAX MOM/DEFL	DIST
1	1	1 3	-1777.4299		80.169		1 4 0
		3	-1777.4299	-22.9055	-80.169	1 -0.0024	1.48
	2	1	1101.6903	97.4950	-341.232	4	
		3	1101.6903	97.4950	341.232	4 -0.0103	5.52
	3	1	1652.6893	103.9971	-363.989	8	
		3	1652.6893		363.989		5.52
	4	1	C7E 4010	-9.9012		2	
	4	1 3	-675.4319		34.6543 -34.6543		1.48
2	1	2	-1755.1540	22.4674	-78.636	0	
2	<u>+</u>	4	-1755.1540		78.636		1.48
	2	2 4	-1202.5355		-144.7110		
		4	-1202.5355	41.3460	144.7110	0 -0.0044	5.52
	3	2	-660.1096		-122.6389	9	
		4	-660.1096	35.0397	122.6389	9 -0.0037	5.52
	4	2	-670.3023	9.8548	-34.491'	7	
	_	4	-670.3023		34.491		5.52
3	1	3	-1777.4299	-22.9055	34.3582	2	
-		5	-1777.4299		-34.3582		2.37
	2	C	1101 6003			c	
	2	3 5	1101.6903 1101.6903		792.7576		2.37
				520,5050	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.0011	1.07
	3	3	1652.6893		783.0044		0 60
		5	1652.6893	-522.0029	-783.0044	4 -0.0043	0.63
	4	3	-675.4319	-9.9012	14.8518	8	
		5	-675.4319	-9.9012	-14.8518	8	
4	1	4	-1755.1540	22.4674	-33.7012	2	
		6	-1755.1540	22.4674	33.7012	2 0.0002	0.63
	2	4	-1202.5355	41.3460	-62.0190	n	
	<u>ل</u> ته	6	-1202.5355		62.0190		0.63

PROGRAM WINANDY JOB : MI RUN : MI	: Gene GREENH ERCED ERCEDGA	ral Fra OUSE CC BLE	ame Analysis).	======================================	PAGE pr 13 17:39:	NO. 10	
====== ELEM NO	LOAD COMB	NODE NO	E L E M AXIAL	E N T R E P SIGN CONVENTIO SHEAR	ORTS N:BEAMDESIG MOMENT MA		DIST
=======			=======================================				=======
	3	4 6	-660.1096 -660.1096	35.0397 35.0397	-52.5595 52.5595	0.0003	0.63
	4	4 6	-670.3023 -670.3023	9.8548 9.8548	-14.7821 14.7821		
5	1	5 7	1024.5998 1024.5998	0.0000 0.0000	0.0000 0.0000		
	2	5 7	-236.3828 -236.3828	0.0000 0.0000	0.0000 0.0000		
	3	5 7	-525.6203 -525.6203	0.0000 0.0000	0.0000 0.0000		
	4	5 7	446.1249 446.1249	0.0000 0.0000	0.0000 0.0000		
6	1	7 8	1024.5998 1024.5998	0.0000 0.0000	0.0000 0.0000		
	2	7 8	-236.3828 -236.3828	0.0000 0.0000	0.0000 0.0000		
	3	7 8	-525.6203 -525.6203	0.0000 0.0000	0.0000 0.0000		
	4	7 8	446.1249 446.1249	0.0000 0.0000	0.0000 0.0000		
7	1	8 9	1024.5998 1024.5998	0.0000	0.0000 0.0000		
	2	8 9	-236.3828 -236.3828	0.0000 0.0000	0.0000 0.0000		
	3	8 9	-525.6203 -525.6203	0.0000 0.0000	0.0000 0.0000		
	4	8 9	446.1249 446.1249	0.0000 0.0000	0.0000 0.0000		

PROGRAM WINANDY JOB : ME RUN : ME	: Gene GREENH RCED RCEDGA	ral Fra OUSE CO BLE	me Analysis ·				PAGE NO. 11 13 17:39:04 2017 JOB NO. : 1
ELEM NO	LOAD COMB	NODE NO	E L E M AXIAL	E N T R E P C SIGN CONVENTION SHEAR		DESIGNEN MAX	RS MOM/DEFL DIST
	=====	======	=======================================		=======		
8	1	9 10	1024.5998 1024.5998	0.0000 0.0000	0.000 0.000		
	2	9 10	-236.3828 -236.3828	0.0000 0.0000	0.000 0.000		
	3	9 10	-525.6203 -525.6203	0.0000 0.0000	0.000 0.000		
	4	9 10	446.1249 446.1249	0.0000 0.0000	0.000 0.000		
9	1	10 11	1024.5998 1024.5998	0.0000 0.0000	0.000 0.000		
	2	10 11	-236.3828 -236.3828	0.0000 0.0000	0.000 0.000		
	3	10 11	-525.6203 -525.6203	0.0000 0.0000	0.000 0.000		
	4	10 11	446.1249 446.1249	0.0000 0.0000	0.000 0.000		
10	1	11 12	1024.5998 1024.5998	0.0000	0.000 0.000		
	2	11 12	-236.3828 -236.3828	0.0000 0.0000	0.000 0.000		
	3	11 12	-525.6203 -525.6203	0.0000 0.0000	0.000 0.000		
	4	11 12	446.1249 446.1249	0.0000 0.0000	0.000 0.000		
11	1	12 6	1024.5998 1024.5998	0.0000 0.0000	0.000 0.000		

WINANDY JOB : MI RUN : MI	GREENH IERCED	HOUSE CO ABLE	came Analysis CO.			hu Apr 13 17:39:	======= E NO. 12 :04 2017 NO. : 1
ELEM NO	LOAD COMB	NODE NO	E L E M AXIAL	E N T R E P O SIGN CONVENTION SHEAR			DIST
	2	12 6	-236.3828 -236.3828	0.0000	0.0000		
	3	12 6	-525.6203 -525.6203	0.0000 0.0000	0.0000 0.0000		
	4	12 6	446.1249 446.1249	0.0000 0.0000	0.0000 0.0000		
12	1	5 13	-1435.9892 -1435.9892	1.1594 1.1594	-3.9700 3.9700	0.0004	1.45
	2	5 13	119.8738 119.8738	2.6030 2.6030	-8.9128 8.9128	0.0008	1.45
	3	5 13	521.3413 521.3413	2.0299 2.0299	-6.9506 6.9506	0.0006	1.45
	4	5 13	-633.0542 -633.0542	0.0133	-0.0455 0.0455		
13	1	13 14	-1419.6983 -1419.6983	0.1425 0.1425	-0.4582 0.4582		
	2	13 14	-34.1775 -34.1775	0.6003 0.6003	-1.9295 1.9295	-0.0002	5.07
	3	13 14	361.4057 361.4057	0.4718 0.4718	-1.5165 1.5165	-0.0001	5.07
	4	13 14	-628.5319 -628.5319	-0.1144 -0.1144	0.3678 -0.3678		
14	1	14 22	-1418.4090 -1418.4090	-2.6229 -2.6229	6.5067 -6.5067	0.0003	3.91
	2	14 22	-193.3428 -193.3428	-2.1647 -2.1647	5.3700 -5.3700	-0.0003	1.05
	3	14 22	201.7521 201.7521	-1.2686 -1.2686	3.1471 -3.1471	-0.0002	1.05

	: Gene GREENH RCED RCEDGA	ral Fr OUSE C BLE	ame Analysis O.	v2.05	======== TIME : '	Thu Apr 13 17:39:	NO. 13 04 2017 NO. : 1
	LOAD COMB	NODE NO	E L E M AXIAL	E N T R E P O SIGN CONVENTION SHEAR		======================================	DIST
	4	14 22	-628.2192 -628.2192	-0.8308 -0.8308	2.061 -2.061		
15	1	23 16	-1418.4728 -1418.4728	2.6281 2.6281	-6.5184 6.5184		1.05
	2	23 16	-438.1501 -438.1501	-5.5021 -5.5021	13.6460 -13.6460		3.91
	3	23 16	-43.0370 -43.0370	-6.3997 -6.3997	15.872 -15.872		1.05
	4	23 16	-628.2468 -628.2468	0.8329 0.8329	-2.065 2.065		
16	1	16 17	-1419.7529 -1419.7529	-0.2381 -0.2381	0.765 -0.765		
	2	16 17	-434.9884 -434.9884	0.1577 0.1577	-0.5070		
	3	16 17	-39.3902 -39.3902	0.3102 0.3102	-0.9972 0.9972		
	4	16 17	-628.5566 -628.5566	0.0668 0.0668	-0.2148 0.2148		
17	1	17 6	-1419.8944 -1419.8944	-1.1178 -1.1178	3.8275 -3.8275		1.45
	2	17 6	-433.7316 -433.7316	1.4680 1.4680	-5.0266 5.0266		5.40
	3	17 6	-38.0054 -38.0054	2.0354 2.0354	-6.9695 6.9695		5.40
	4	17 6	-628.4420 -628.4420	0.0170 0.0170	-0.0581 0.0581		

WINANDY JOB : Mi RUN : Mi	GREENH ERCED ERCEDGA	IOUSE (ABLE	rame Analysis CO.		======== TIME :	Thu Ap:	r 13 17	PAGE NO. 14 :39:04 2017 JOB NO. : 1
=======			E L E M	ENT REPO	======= R T S	=======		
ELEM NO ========	LOAD COMB	NODE NO	AXIAL	SIGN CONVENTION SHEAR	: BEAM MOMENT	MAX	MOM/DI	
18	1	5 18	445.8914 445.8914	0.0000 0.0000	0.000			
	2	5	-1483.9678	0.0000	0.000	0		
		18	-1483.9678	0.0000	0.000	0		
	3	5	-1602.9790	0.0000	0.000	0		
		18	-1602.9790	0.0000	0.000	00		
	4	5	207.8690	0.0000	0.000	0		
		18	207.8690	0.0000	0.000			
19	1	6	425.7675	0.0000	0.000			
		21	425.7675	0.0000	0.000	0		
	2	6	1117.3820	0.0000	0.000			
		21	1117.3820	0.0000	0.000	0		
	3	6	1006.0708	0.0000	0.000			
		21	1006.0708	0.0000	0.000	0		
	4	6	203.1452	0.0000	0.000	0		
		21	203.1452	0.0000	0.000	0		
20	1	18 13	-1503.7870 -1503.7870	-0.3149 -0.3149	0.134		0 0055	
		10	-1503.7870	-0.5149	-3.978	8	0.005	7 7.60
	2	18	-484.1384	0.6876	-0.293			
		13	-484.1384	0.6876	8.688	6	-0.0124	4 7.60
	3	18	52.8328	0.7731	-0.330			
		13	52.8328	0.7731	9.769	8	-0.0139	9 7.60
	4	18	-429.8447	-0.1438	0.061			
		13	-429.8447	-0.1438	-1.816	6	0.0026	5 7.60
• -	-							
21	1	19 14	-1508.7209 -1508.7209	-0.1975 -0.1975	0.123 -3.024		0.0064	1 9.29
					5.024	2	0.0085	· J.4J
	2	19 14	-485.6765 -485.6765	0.3864 0.3864	-0.242			
		77	-00.0/00	0.3004	5.917	1	-0.0125	5 9.29

WINANDY JOB : ME RUN : ME	GREENH ERCED ERCEDGA	OUSE C	rame Analysis CO.			1 Apr 13 17:39:	NO. 15 04 2017 NO. : 1
=======	* == == == ==	======	========== E L E M		:=====================================	===============	
ELEM NO	LOAD COMB	NODE NO	AXIAL	SIGN CONVENTION SHEAR	I : BEAM DES	IGNERS MAX MOM/DEFL	
				AAAnG ==================		•	DIST ======
	_						
	3	19 14	53.1250 53.1250	0.4396 0.4396	-0.2753 6.7309	0 0140	0 00
		7.4	55.1250	0.4396	6.7309	-0.0142	9.29
	4	19	-431.1180	-0.0912	0.0571		
		14	-431.1180	-0.0912	-1.3966	0.0029	9.29
22	1	20	-1508.7494	0.1939	-0.1214		
		16	-1508.7494	0.1939	2.9685	-0.0063	9.29
	2	20	-121.4411	0.3148	-0.1972		
	2	16	-121.4411	0.3148	4.8208	-0.0102	9.29
	2						
	3	20 16	417.3708 417.3708	0.2633 0.2633	-0.1649 4.0312	-0.0085	9.29
		τO	±17.5700	0.2000	4.0312	-0.0085	9.29
	4	20	-431.1256	0.0907	-0.0568		
		16	-431.1256	0.0907	1.3893	-0.0029	9.29
23	1	21	-1511.0670	0.3084	-0.1316		
		17	-1511.0670	0.3084	3.8964	-0.0056	7.60
	2	21	-116.7086	0.5507	-0.2350		
		17	-116.7086	0.5507	6.9584	-0.0099	7.60
	3	01	400 0000	0 4 6 0 1	0 1000		
	2	21 17	422.8399 422.8399	0.4681 0.4681	-0.1998 5.9147	-0.0084	7.60
				0.1001	0.011/	0.0001	,
	4	21	-431.9700	0.1432	-0.0611		
		17	-431.9700	0.1432	1.8089	-0.0026	7.60
24	1	1	0.0000	0.0000	0.0000		
		7	0.0000	0.0000	0.0000		
	2	1	0.0000	0.0000	0.0000		
		7	0.0000	0.0000	0.0000		
	3	1	0.0000	0.0000	0 0000		
	5	1 7	0.0000	0.0000	0.0000 0.0000		
	4	1 7	0.0000 0.0000	0.0000 0.0000	0.0000		
		/	0.0000	0.0000	0.0000		

	GREENH ERCED	ral Frame OUSE CO. BLE	Analysis		======= TIME :	Thu Apr	13 17:39	E NO. 16 :04 2017 NO. : 1
ELEM NO	LOAD COMB	NODE NO	E L E M	E N T R E P O SIGN CONVENTION SHEAR		DESIGNEI MAX	RS MOM/DEFL	DIST
=======	= = = = = = =		:===========	=======================================		=======	===========	=======
25	1	8 22	0.0000 0.0000	0.0000 0.0000	0.000 0.000			
	2	8 22	0.0000 0.0000	0.0000 0.0000	0.000 0.000			
	3	8 22	0.0000 0.0000	0.0000 0.0000	0.000 0.000			
	4	8 22	0.0000 0.0000	0.0000 0.0000	0.000 0.000			
26	1	9 15	0.0000	0.0000 0.0000	0.000 0.000			
	2	9 15	0.0000 0.0000	0.0000 0.0000	0.000 0.000			
	3	9 15	0.0000 0.0000	0.0000 0.0000	0.000 0.000			
	4	9 15	0.0000 0.0000	0.0000 0.0000	0.000 0.000			
27	1	10 15	0.0000 0.0000	0.0000 0.0000	0.000 0.000			
	2	10 15	0.0000 0.0000	0.0000 0.0000	0.000 0.000			
	3	10 15	0.0000 0.0000	0.0000 0.0000	0.000 0.000			
	4	10 15	0.0000 0.0000	0.0000 0.0000	0.000 0.000			
28	1	11 23	0.0000 0.0000	0.0000 0.0000	0.000 0.000			

PROGRAM WINANDY JOB : MI RUN : MI	: Gene GREENH ERCED ERCEDGA	ral Fra OUSE CO BLE	me Analysis	 v2.05	TIME :		13 17:39	E NO. 17 :04 2017 NO. : 1
ELEM NO	LOAD COMB	NODE NO	E L E M AXIAL	E N T R E P C SIGN CONVENTION SHEAR			======== RS MOM/DEFL	DIST
=======	=====		=======================================	================		========	= = = = = = = = =	======
	2	11 23	0.0000 0.0000	0.0000 0.0000	0.000			
	3	11 23	0.0000 0.0000	0.0000 0.0000	0.000			
	4	11 23	0.0000 0.0000	0.0000 0.0000	0.000			
29	1	12 2	0.0000 0.0000	0.0000 0.0000	0.000			
	2	12 2	0.0000 0.0000	0.0000 0.0000	0.000			
	3	12 2	0.0000 0.0000	0.0000 0.0000	0.000			
	4	12 2	0.0000 0.0000	0.0000 0.0000	0.000 0.000			
30	1		1205.8393 1205.8393	-0.1530 -0.1530	2.655 -0.123		-0.0072	7.56
	2	22 24	-229.9412 -229.9412	0.2570 0.2570	-4.460 0.206		0.0122	7.56
	3	22 24	193.5088 193.5088	0.2988 0.2988	-5.184 0.240		0.0141	7.56
	4	22 24	-358.9392 -358.9392	-0.0696 -0.0696	1.207 -0.056		-0.0033	7.56
31	1		1205.5087 1205.5087	0.1506 0.1506	-2.612 0.121		0.0071	7.56
	2	23 25	-699.2280 -699.2280	0.2065 0.2065	-3.583 0.166		0.0098	7.56
	3	23 25	-275.8697 -275.8697	0.1659 0.1659	-2.878 0.133		0.0078	7.56

PROGRAM WINANDY JOB : M RUN : M	: Gene GREENH ERCED ERCEDGA	eral F HOUSE	rame Analysis CO.	TIME :	Thu Apr 13 17:3 JC	AGE NO. 18 39:04 2017 DB NO. : 1	
====== ELEM NO	LOAD COMB	NODE NO	ELEM	SIGN CONVENTION SHEAR	O R T S DN : BEAM MOMENT	DESIGNERS MAX MOM/DEH	FL DIST
	4	23 25	-358.7922 -358.7922	0.0693 0.0693 0.0693	-1.202 0.055	1	7.56
32	1	22 15	-1457.6115 -1457.6115	75.0402 75.0402	-186.134 186.134		1.05
	2	22 15	-351.3992 -351.3992	-7.5354 -7.5354	18.691 -18.691		3.91
	3	22 15	54.4455 54.4455	-27.9345 -27.9345	69.290 -69.290		3.91
	4	22 15	-645.9222 -645.9222	34.2421 34.2421	-84.936 84.936		1.05
33	1	23 15	-1457.5187 -1457.5187	-74.9996 -74.9996	186.067 -186.067		1.05
	2	23 15	-429.4929 -429.4929	12.3144 12.3144	-30.551 30.551		3.91
	3	23 15	-23.6739 -23.6739	32.7024 32.7024	-81.132 81.132		1.05
	4	23 15	-645.8807 -645.8807	-34.2235 -34.2235	84.905 -84.905		1.05
=======	= = = = = = =		======================================	======================================	======= S		========
NODE NO	LOA COM	В	PX	PY		MOMENT	
			Jnits : Lb	Lp		Lb-Ft	
LOAD CON	IBINATI	ONS:					
COMB 1	: 1.0 + 1.0	0 X CA 0 X CA					
COMB 2		0 X C2 0 X C2 0 X C2	ASE 2				

WINANDY GR JOB : MERC RUN : MERC	EENHOUSE C ED EDGABLE	ame Analysis v2. O.		PAGE NO. 19 Thu Apr 13 17:39:04 2017 JOB NO. : 1
NODE NO	LOAD COMB	R E A C I PX	PY	MOMENT
	1.00 X CA 1.00 X CA			
COMB 4 : +	1.00 X CA 1.00 X CA			
1	1	22.9055	1777.4299	-80.1691
	2	-411.4950	-1101.6903	341.2324
	3	-417.9971	-1652.6893	363.9898
	4	-302.0988	675.4319	-34.6543
2	1	-22.4674	1755.1540	78.6360
	2	-41.3460	1202.5355	144.7110
	3	-35.0397	660.1096	122.6389
	4	-321.8548	670.3023	34.4917
18	1	222.2477	1125.6059	-0.1344
	2	-791.8214	1742.5118	0.2935
	3	-849.8447	1306.4858	0.3300
	4	106.2011	253.5538	-0.0614
19	1	0.1975	1508.7209	-0.1237
	2	-0.3864	485.6765	0.2420
	3	-0.4396	-53.1250	0.2753
	4	0.0912	431.1180	-0.0571
20	1	-0.1939	1508.7494	0.1214
	2	-0.3148	121.4411	0.1972
	3	-0.2633	-417.3708	0.1649
	4	-0.0907	431.1256	0.0568
21	1	-222.6919	1147.9918	0.1316
	2	-584.1728	-836.1438	0.2350
	3	-525.9510	-1280.7713	0.1998
	4	-106.2484	258.7370	0.0611

3×35quare fa = 3617.5 # 5061 PSI fb= 2821 × 12/1.04. = 32550 p51 F3 = 2100 #/1.11 = 1892. PSI <u>Kl = 3(84)</u>. r 1.19. $C_{mx} = .75$ $F_a = 23.31K5T$ = 56:5 Fe' = 12 (3.141) 29,000,000 23 (56.5)2 Fh= .66 (50) = 33H 5I + 1/3 For PL+WL = 44M5I (1.5.6) = 416779 $\frac{5061}{33,000} - \frac{33161}{44,000} + 0 < 1$ $\frac{5061}{23310} + \frac{.75(32550)}{(1 - \frac{5061}{46779})} = .835ecPOK$ $\frac{5061}{.835ecPOK} + \frac{.835ecPOK}{.835ecPOK}$

2×259 Topchord fa = 7579 #/,83 "2 = 9131 PSI $f_b = 419 + 12 = 50 = 10056pt = 1073)$ $f_5 = 122/.83 = 147.95I = 69.7$ $F_{Q}' = \frac{12(3.14)^2(29000000)}{23(69.7)^2}$ Fa = 21,066 PSI = 30739 PSI Fb = 6(50) = 33,000/P5I +'3 For WL+DL $\frac{.9/3}{33,000} + \frac{.1005600}{33,000} = 1$ $\frac{9/31}{21,060} + \frac{.75(10056)}{(1 - \frac{9/31}{30739})(33,000)} = .73$ Sect OU

#3 Cross Tie Fa = 6784/,328" = 20683 Fa=.6(50,000)= 30000 $\frac{20683}{30000} \leq 15ectok$ Tension Strut. $(125 \neq (2.5 - .5625) = 242''^2$ fa = 2313/.242 = 9553 PSI Fa= 25000 X.66 = 16500PSI <u>9558</u> <u>-</u> 1 SectOK

2.375 Strut KI = $f_{A} = 2128^{\#}/_{681} = 3125pst = \frac{\cdot (9.1)}{\cdot 81} = \frac{\cdot (9.1)}{\cdot 81}$ Fb = 45 #12/373 = 14 48 pst = 93 $F_{e} = \frac{12(\pi^2)(2900000)}{23(93)^2}$ Fe'= 17266 FA = 16,29 KSI = 16290 PSI Fb=.66(50)=33000 P5I 3 $\frac{3125}{33000} + \frac{1448}{33000} \leq 1$ $\frac{-3125}{16290} + \frac{.8(1448)}{(1-\frac{3125}{7266})^{3}3000} < 1$ Set Okforboal

XBrace Use Flat 2'/2x 1/2 @ 16500 ¥.242 = 3993 #May Load Mar Applied = 5021# USE 1/4 "double Plata W/ 3/9 Bolt 3/2 bolt = 2310# i25 * (12 - 625) * 16500 = 3610 # Use 3 Wind Brace Set 5

Cable Post Fa=1206[#],681"= 1771P5I <u>Ml</u> = (.7)(216) =187 681 FR= 6.420 M5I 1771 PSE 21 Sector X Beace USE 18 X2/2@ /6500 +,242 = 3992 Max Applied load = 5021 use double "4" Plate at Basew/ 36 kolt Max Shear = 2310 # 1/4" * (1.5-.625) ¥ 16500 = 3610# We 3 sets Wind Balles

1/2" Bolts are Masz# Single Shear 8514 # double Shear 3/3 Bolts are 2310# Single Shear 4/620# double Shear All Connections pare More than Sufficient Bolts 502 Allpled Loads