ADDENDUM NO. 3

3/20/2024

PROJECT: Merced College Greenhouse Complex OWNER: Merced College

3600 M Street Merced CA, 95348

ENGINEER: Blair, Church & Flynn BID NO: 2024-08

Attention: Zachary Hockett BCF PROJECT NO. 222-0314

Kyle Lawson

It will be the responsibility of the General Contractor to submit the information contained in this addendum to all its subcontractors and suppliers. Acknowledge receipt of this Addendum in the space provided on the Bid Form. Failure to do so may subject Bidder to disqualification. The following additions, deletions, and revisions to the Drawings and Project Manual are hereby made and do become a part of these Contract Documents.

TABLE OF CONTENTS

CHANGES TO BIDDING AND CONTRACT REQUIREMENTS

AD3-C104: Change to Drawings
AD3-C105: Change to Drawings
AD3-C106: Changes to Drawings
AD3-X201: Changes to Drawings
AD3-A100: Changes to Drawings
AD3-A102: Changes to Drawings
AD3-A200: Changes to Drawings
AD3-A201: Changes to Drawings
AD3-A300: Changes to Drawings
AD3-A401: Changes to Drawings
AD3-A600: Changes to Drawings

AD3-1: Bid Questions AD3-2: Bid Questions

ATTACHMENTS

C104-SITE PLAN & HORIZONTAL CONTROL

C105-GRADING AND DRAINAGE PLAN

C106-UTILITY PLAN

X201-UTILITY DETAILS

A100-FLOOR & FOUNDATION PLANS

A102-ELEVATIONS & SECTIONS

A200-FOUNDATION & FLOOR & CEILING PLANS

A201-ELEVATIONS & SECTIONS

A300-FOUNDATION & FLOOR & CEILING PLANS

A600-FOUNDATION DETAILS

Blair, Church & Flynn Consulting Engineers

451 Clovis Avenue, Suite 200

Clovis, CA 93612

(559) 326-1400 FAX (559) 326-1500

Stamped Calculations Stamped Drawings Bill of Lading (BOL) Equipment Layout Merced Calculations

CHANGES TO BIDDING AND CONTRACT REQUIREMENTS

AD3-C104: Change to Drawings

- Keynote 12 has been revised in the legend, see material storage yard on plans
- Keynote 5 has been added to the legend, see electrical equipment pad adjacent to storage building on plans
- General Horizontal Control Notes have been revised
- Bottle filling station has been added to Horizontal Control Legend, see northeast corner of potting shade structure
- Keynote 3 has been added to perimeter of large greenhouse
- Dimensions have been revised, see material storage yard

AD3-C105: Change to Drawings

- Top of footing grade description has been added to Grading Legend
- Building over-excavation limits verbiage has been revised, see Grading Legend
- Keynote 7 has been added to the legend, see potting shade structure on plans
- Downspout has been added to Grading Legend, see potting shade structure on plans
- Stabilization Notes have been added
- Note 8 of General Grading and Drainage Notes has been revised
- Various grade elevations have been revised see clouded grades on plan
- Sheet title has been revised to "Grading and Drainage Plan"

AD3-C106: Changes to Drawings

- Water line verbiage has been revised, see Utility Legend
- Water line sizes have been identified at house bibs at the Potting Shade Structure
- Water line size has been identified at the stubbed location at the south of the site
- Gas line verbiage has been revised, see Utility Legend
- Dry well has been added to Utility Legend, see planter east of potting shade structure on plans
- Keynote 2 has been revised in the legend, see east of large greenhouse on plans
- Keynote 4 has been added to the legend, see northeast corner of the potting shade structure for the location of the bottle-filling station

- Utilities south of small greenhouses have been revised
- Gas line west of large greenhouse has been revised

AD3-X201: Changes to Drawings

- Detail [B/X201] has been revised and "Gas Notes" have been added
- Detail [C/X201] has been added
- Detail [D/X201] has been added
- Detail [E/X201] has been added

AD3-A100: Changes to Drawings

- Keynote has been revised
- Keynote 4 has been revised
- Keynote 19 has been revised, now references detail [C/X201]
- Additional interior water pipe has been incorporated, see east and west sides of greenhouse for extents of addition and accompanying keynotes

AD3-A102: Changes to Drawings

- Detail [A/102] has been revised, see updates to height of watering boom
- Keynote 1 has been revised

AD3-A200: Changes to Drawings

- Keynote 1 has been revised
- Keynote 2 has been revised, see detail [B/A200]
- Keynote 3 has been revised, see detail [A/A200]
- Keynote 14 has been revised, see detail [B/A200]
- Keynote 15 has been revised, see detail [B/A200]
- Keynote 16 has been revised, see detail [C/A200]
- Keynote 17 has been revised, see detail [C/A200]
- Keynote 19 has been revised, see detail [B/A200]
- Keynote 20 has been revised, see detail [B/A200]
- Keynote 21 has been added, see detail [B/A200]

AD3-A201: Changes to Drawings

- Keynote 1 has been revised
- Keynote 2 has been revised, see detail [A/A201]
- Keynote 3 has been revised, see detail [A/A201]

AD3-A300: Changes to Drawings

- Keynote 1 has been revised
- Keynote 3 has been revised, see detail [A/A300]

AD3-A401: Changes to Drawings

Keynote 1 has been revised

AD3-A600: Changes to Drawings

- Detail [C/A600] has been revised
- Detail [E/A600] has been revised
- Detail [G/A600] has been removed

AD3-1: Bid Questions

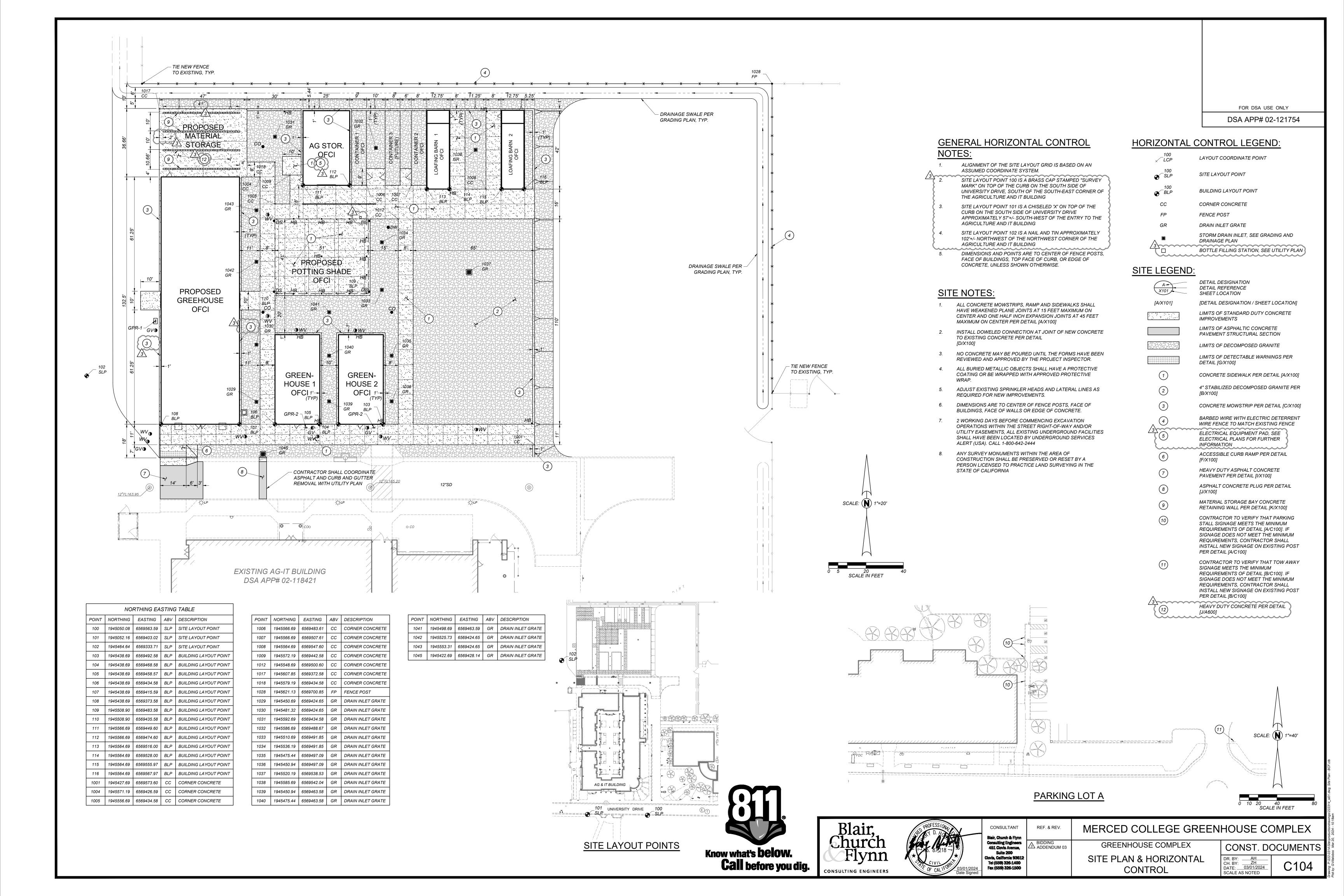
Question: Do you have Specs for the Small Greenhouse

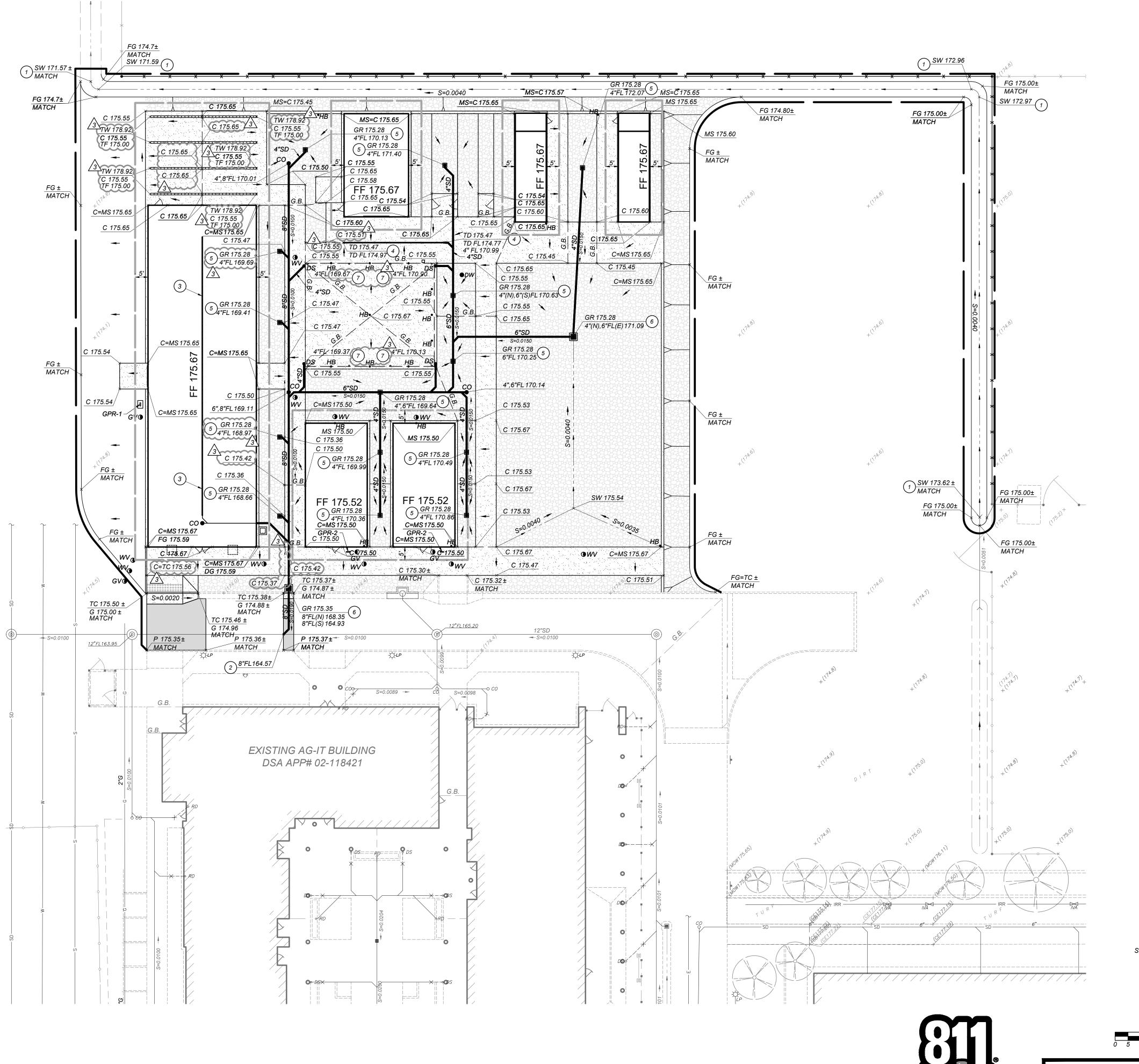
Answer: Addendum 2, pages 25-50 Green House Manufacturer or

https://www.greenhousemegastore.com/products/1200-series-gothic-arch-package?variant=42703411806407

AD3-2: Bid Questions

Question: Do you have Specs for the Large greenhouse


Answer: Attached you will find


- Stamped Calculations (Pg 16-54)
- Stamped Drawings (Pg 55-124)
- Bill of Lading (BOL) (Pg 125)
- Equipment Layout (Pg 126)
- Merced Calculations (127-198)

SPECIAL NOTE:

It is the responsibility of each Bidder to acknowledge all addenda by signing below and submitting a copy of each addendum with their respective bid.

I HAVE READ AND UNDERSTAND THESE MODIFICATIONS TO THE ABOVE BID:

GENERAL GRADING AND DRAINAGE

THE REQUIREMENTS AND INFORMATION SET OUT BELOW ARE PROVIDED FOR THE CONTRACTOR'S CONVENIENCE AND DO NOT ENCOMPASS ALL PROJECT REQUIREMENTS DESCRIBED BY THE PROJECT PLANS AND SPECIFICATIONS AND/OR APPLICABLE LAWS, REGULATIONS AND/OR BUILDING CODES.

- 1. CONSTRUCTION OF ALL PROJECT SITE IMPROVEMENTS SUBJECT TO ADA ACCESS COMPLIANCE, INCLUDING ACCESSIBLE PATH OF TRAVEL, CURB RETURNS, PARKING STALL(S) AND UNLOADING AREAS, BARRIER FREE AMENITIES AND/OR OTHER APPLICABLE SITE IMPROVEMENTS SHALL CONFORM TO THE AMERICANS WITH DISABILITIES ACT, CALIFORNIA TITLE 24, AND THE CALIFORNIA BUILDING CODE, CURRENT EDITION(S).
- CONTRACTOR SHALL FIELD VERIFY ALL GRADES AND SLOPES PRIOR TO THE PLACEMENT OF CONCRETE AND/OR PAVEMENT FOR CONFORMANCE WITH ADA ACCESS COMPLIANCE REQUIREMENTS. EXAMPLES OF MINIMUM AND MAXIMUM LIMITS RELATED TO ADA ACCESS COMPLIANCE INCLUDE, BUT ARE NOT LIMITED TO:
 - a) ACCESSIBLE PATH OF TRAVEL CROSS-SLOPE SHALL NOT EXCEED 2%
 - b) ACCESSIBLE PATH OF TRAVEL LONGITUDINAL SLOPES SHALL NOT EXCEED 5%
 - c) RAMP LONGITUDINAL SLOPES SHALL NOT EXCEED 8.33%
 - d) WALKS SHALL NOT HAVE LESS THAN 48 INCHES IN
 - UNOBSTRUCTED WIDTH e) ACCESSIBLE PARKING SPACES AND ACCESS AISLES SHALL NOT
 - EXCEED 2% SLOPE IN ANY DIRECTION
 - f) LANDINGS AT THE TOP AND BOTTOM OF ACCESSIBLE RAMPS SHALL NOT EXCEED 2% SLOPE IN ANY DIRECTION
 - g) GUTTERS AND ROAD SURFACES DIRECTLY ADJACENT TO AND WITHIN 2 FEET OF A CURB RAMP SHALL HAVE A COUNTER SLOPE NOT TO EXCEED 5%
- CONTRACTOR MUST IMMEDIATELY NOTIFY THE ENGINEER OF RECORD, IDENTIFIED BY THE PROFESSIONAL ENGINEERING SEAL AND SIGNATURE ON THESE PLANS, OF ANY SITE CONDITION(S) AND/OR DESIGN INFORMATION THAT PREVENTS THE CONTRACTOR FROM COMPLYING WITH THE LAWS, REGULATIONS AND/OR BUILDING CODES GOVERNING ADA ACCESS COMPLIANCE.
- GROUND SLOPES AWAY FROM BUILDING PADS IN LANDSCAPED OR DIRT AREAS SHALL BE NO LESS THAN 5% FOR AT LEAST TEN (10) FEET, OR AS OTHERWISE NOTED ON THE PLANS.
- DRAINAGE SHALL NOT BE ALLOWED ONTO ADJACENT PROPERTY
- ALL FILL MATERIAL USED TO SUPPORT THE FOUNDATIONS OF ANY BUILDING OR STRUCTURE SHALL BE PLACED UNDER THE DIRECTION OF A LICENSED GEOTECHNICAL ENGINEER, AND IN COMPLIANCE WITH THE PROJECT SPECIFICATIONS. A SOILS COMPACTION REPORT SHALL BE SUBMITTED TO THE ENGINEER OF RECORD AS REQUIRED BY THE PROJECT SPECIFICATIONS.
- THE CONTRACTOR SHALL IMPLEMENT DUST CONTROL MEASURES AS REQUIRED BY THE PROJECT SPECIFICATIONS, AND BY
- GOVERNING PUBLIC AGENCIES. THIS PROJECT IS SUBJECT TO AN EROSIVITY WAIVER GRANTED BY THE STATE WATER RESOURCES CONTROL BOARD; HOWEVER, THE EROSIVITY WAIVER IS BASED ON CONSTRUCTION BEING COMPLETED BEFORE THE BEGINNING OF NOVEMBER. IF THE PROJECT EXTENDS INTO NOVEMBER, A SWPPP MAY BE REQUIRED. CONTRACTOR SHALL NOTIFY THE OWNER AND THE ENGINEER OF RECORD IMMEDIATELY IF THE PROJECT IS PROJECTED TO EXTEND INTO NOVEMBER FOR ANY REASON. SEE THE PROJECT SPECIFICATIONS
- AS A FIRST ORDER OF WORK, THE CONTRACTOR SHALL POT HOLE THE EXISTING UTILITY LINES AT THE POINT OF CONNECTION TO VERIFY THE LOCATION. SIZE. PIPE MATERIAL AND ELEVATION SO THAT THE ENGINEER CAN MAKE ELEVATION AND/OR ALIGNMENT ADJUSTMENTS IF NECESSARY. THE CONTRACTOR SHALL ALSO POT HOLE WHERE PROPOSED UTILITIES ARE SHOWN TO CROSS OR BE PROXIMATE TO EXISTING UTILITIES. NOTIFY THE ENGINEER OF ANY CONFLICTS AND OBTAIN DIRECTION BEFORE PROCEEDING.
- 10. ADJUST UTILITY LIDS WITHIN NEW CONSTRUCTION AREA TO FINISHED GRADE PER DETAIL [E/X100]. REPLACE ALL BROKEN LIDS WITH NEW. PROVIDE TRAFFIC RATED LIDS WITHIN VEHICLE LOADING
- 11. CONTRACTOR TO WATER TEST PAVEMENT WITHIN NEW IMPROVEMENT AREA. CONTRACTOR TO REPLACE PAVEMENT WHERE BIRD BATHS OCCUR AFTER TEST AS DIRECTED BY THE INSPECTOR OR ENGINEER.

GRADING LEGEND

CONCRETE FINISHED FLOOR

MOWSTRIP

PAVEMENT SWALE

TOP OF CURB TRENCH DRAIN GRATE

TOP OF FOOTING^Z

TOP OF WALL EXISTING ELEVATION

NEW FINISHED GRADE

DIRECTION OF DRAINAGE 3 BUILDING OVER-EXCAVATION LIMITS; SEE DETAIL *[H/X100]*

FOR DSA USE ONLY

DSA APP# 02-121754

__ <u>G</u>.<u>B.</u> __ GRADE BREAK LIMITS OF GRADING

PIPE SLOPE AND DIRECTION OF FLOW

—- − − − — SWALE

PVC STORM DRAIN PIPELINE; SIZE AS NOTED.

TRENCH AND BACKFILL PER [G/X200] FLOWLINE SLOPE AND DIRECTION OF FLOW

U23 STORM DRAIN INLET

V12 STORM DRAIN INLET

CORRAL IRRIGATION DRAINAGE DITCH

CONNECT TO EXISTING STORM DRAIN WITH

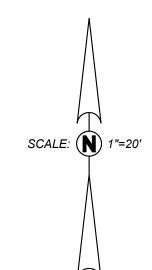
WATER-TIGHT CONNECTION MAIN GREENHOUSE TRENCH DRAIN SYSTEM,

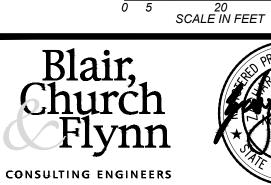
REFER TO ARCHITECTURAL PLANS

TRENCH DRAIN PER [D/A600]

V12 STORM DRAIN INLET PER DETAIL [F/X200]

U23 STORM DRAIN INLET PER DETAIL [H/X200] HARD-PIPED CONNECTION TO SHADE CANOPY 3


DOWNSPOUT PER DETAIL [E/X200] SURFACE CLEANOUT PER DETAIL [C/X200]


•DS DOWNSPOUT

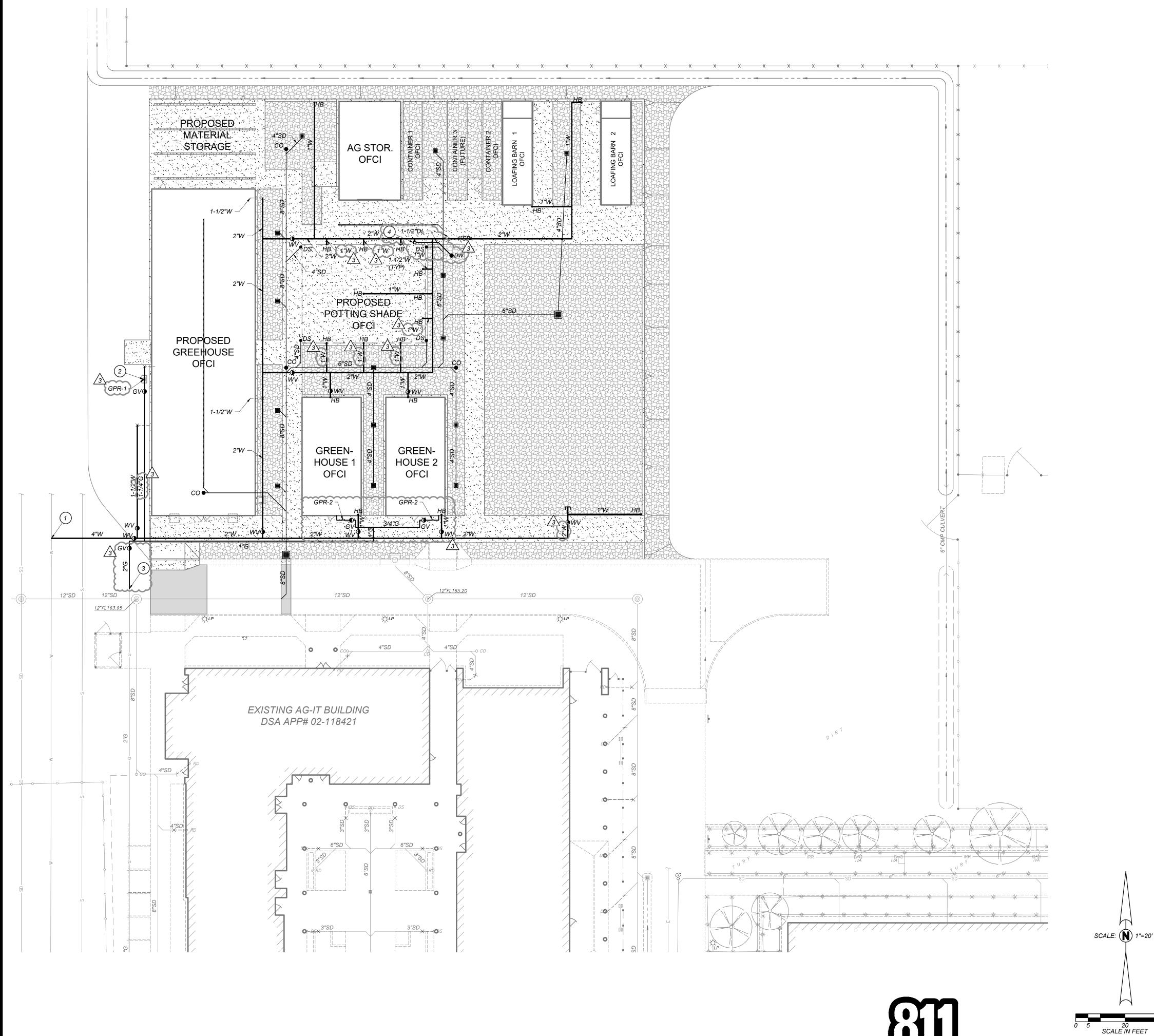
STABILIZATION NOTES:

CONTRACTOR SHALL BE RESONSBILE FOR STABLIZING ALL EARTH AND SURFACES DISTURBED AS PART OF THIS PROJECT, INCLUDING LAY DOWN AREAS AND AREAS OUTSIDE THE LIMITS OF THE PROJECT WHICH ARE DISTURBED BY THE PROJECT

STABILIZATION SHALL BE HYDRO-SEEDING, OR SIMILAR PER THE CONSTRUCTION GENERAL PERMIT ORDER SECTION III.H

Know what's **below**. **Call before you dig.**

BIDDING
ADDENDUM 03


MERCED COLLEGE GREENHOUSE COMPLEX GREENHOUSE COMPLEX

CONST. DOCUMENTS GRADING AND DRAINAGE PLAN

DATE: 03/01/2024

SCALE AS NOTED

C105

FOR DSA USE ONLY DSA APP# 02-121754

GENERAL SITE UTILITY NOTES:

- 1. AS FIRST ORDER OF WORK, CONTRACTOR SHALL POTHOLE EXISTING UTILITIES AND NOTIFY ENGINEER IMMEDIATELY OF LOCATIONS, SIZE AND DEPTH.
- 2. THE CONTRACTOR SHALL FIELD VERIFY THE EXACT LOCATION, SIZE, DEPTH, AND TYPE OF ALL EXISTING UTILITIES AND INTERFERENCES SITUATED ALONG THE ROUTE OF THE PROPOSED CONSTRUCTION PRIOR TO COMMENCEMENT OF EXCAVATION, FABRICATION, AND INSTALLATION. THE CONTRACTOR SHALL CONSTRUCT ALL IMPROVEMENTS IN SUCH A MANNER AS WILL PROTECT ALL EXISTING UNDERGROUND UTILITIES AND, IN THE EVENT OF ANY CONFLICTS, SHALL NOTIFY THE ENGINEER BEFORE
- 3. SEE IRRIGATION PLANS FOR PROPOSED IRRIGATION PIPE ALIGNMENT.
- 4. COORDINATE EXACT POINTS OF CONNECTION TO PLUMBING BY OTHERS AND NOTIFY THE ENGINEER OF ANY CONFLICT SO THAT ADJUSTMENTS CAN BE MADE IF NEEDED.
- 5. SAWCUT EXISTING CONCRETE IMPROVEMENTS AS NECESSARY TO INSTALL NEW WATER OR SEWER IMPROVEMENTS. CONSTRUCT NEW CONCRETE IMPROVEMENTS TO MATCH ADJACENT CONCRETE IMPROVEMENTS AND JOIN TOGETHER WITH DOWEL BARS PER DETAIL [D/X100]
- INSTALLATION, TYPE, AND MANUFACTURER'S MODELS OF DOMESTIC WATER METERS, DRAIN INLETS/OUTLETS AND OTHER APPURTENANCES OF SITE UTILITY SYSTEMS SHALL BE DONE IN STRICT ACCORDANCE WITH GOVERNING AUTHORITY REQUIREMENTS.
- 7. LAYOUT OF MATERIALS, EQUIPMENT AND SYSTEMS IS GENERALLY DIAGRAMMATIC UNLESS SPECIFICALLY DIMENSIONED. SOME WORK MAY BE SHOWN OFFSET FOR CLARITY. THE ACTUAL LOCATIONS OF ALL MATERIALS, PIPING, FIXTURES, EQUIPMENT, SUPPORTS, ETC., SHALL BE CAREFULLY PLANNED PRIOR TO INSTALLATION OF ANY WORK TO AVOID ALL INTERFERENCES WITH EACH OTHER OR WITH STRUCTURAL, ELECTRICAL, PLUMBING AND MECHANICAL, ARCHITECTURAL OR ANY OTHER ELEMENTS. ALL CONFLICTS SHALL BE CALLED TO THE ATTENTION OF THE ARCHITECT AND THE ENGINEER PRIOR TO THE INSTALLATION OF ANY WORK OR THE ORDERING OF ANY EQUIPMENT.
- 8. ANY INSPECTION TO BE MADE BY THE PROJECT INSPECTOR SHALL REQUIRE A MINIMUM OF 24 HOUR NOTICE.
- 9. PRESSURE TESTS AND PURITY TESTS ARE REQUIRED ON ALL WATER SYSTEM INSTALLATIONS. CONTRACTOR TO COORDINATE WITH THE AUTHORITY HAVING JURISDICTION.
- 10. IF THE TOP OF THE STEM OF ANY WATER GATE VALVE IS DEEPER THAN 4' BELOW FINISHED PAVEMENT GRADE, THE CONTRACTOR SHALL INSTALL A STEM EXTENSION SO THAT THE TOP OF THE STEM, WITH EXTENSION, SHALL BE NO DEEPER THAN 4' NOR SHALLOWER THAN 2' FROM FINISHED GRADE.
- 11. BACKFILL UTILITY TRENCHES PER DETAIL [G/X200]
- 12. ADJUST EXISTING UTILITY LIDS TO FINISHED GRADE PER UTILITY COMPANY STANDARDS AND DETAIL [E/X100] AND INSTALL TRAFFIC RATED LIDS WHERE LOCATED IN A TRAFFIC AREA.

UTILITY LEGEND:

6"W	PVC WATER LINE, SIZE AS NOTED ON PLAN. THRUST BLOCKS PER DETAIL [A/X200]. PIPE BEDDING AND
<u>7</u>	BACKFILL PER DETAIL [G/X200]
6"SD	STORM DRAIN PIPE, SEE GRADING PLAN

G GAS LINE, 5LB HOSE BIBB PER DETAIL [D/X200]

WATER VALVE PER [B/X200] GAS SHUT-OFF VALVE PER [A/X201]

DRY WELL PER [E/X201] E— CAP END OF UTILITY LINE. CAP END OF UTILITY LINE.

CONNECT TO EXISTING WATER LINE WITH WATER- TIGHT CONNECTION.

GAS PRESSURE REGULATOR VALVE PER [B/X201] ; PROVIDE HOUSEKEEPING PAD

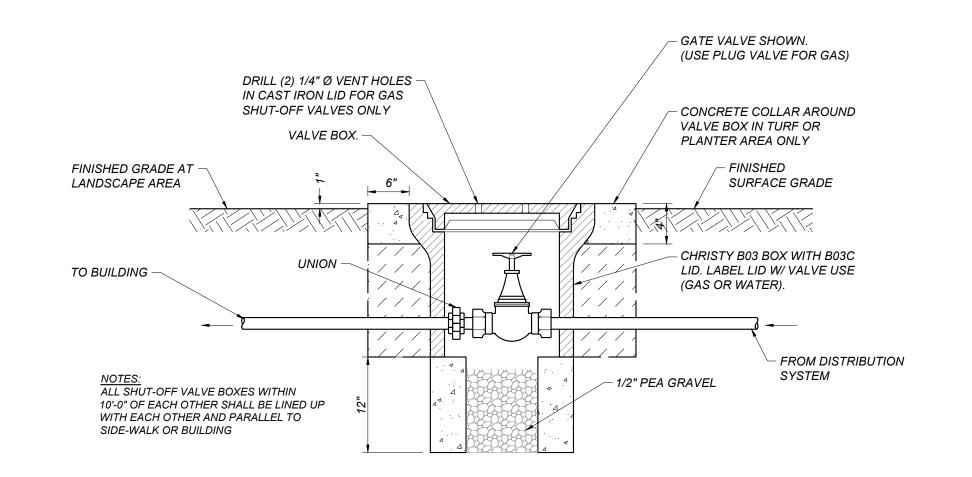
CONNECT TO EXISTING GAS LINE

BOTTLE FILLING STATION PER DETAIL [D/X201]

SCALE: (N) 1"=20'

Blair, CONSULTING ENGINEERS

Know what's **below**. **Call before you dig.**


BIDDING
ADDENDUM 03

UTILITY PLAN

MERCED COLLEGE GREENHOUSE COMPLEX GREENHOUSE COMPLEX CONST. DOCUMENTS

DR. BY: AH
CH. BY: ZH
DATE: 03/01/2024
SCALE AS NOTED

C106

GREENHOUSE STRUCTURAL

HOSE BIBB

MODEL IDENTIFIERS: LARGE GREENHOUSE MAXITROL #325-7AL210D-B (OR EQUAL) CSA 6.22/ANSI Z21.80 LISTED GAS PRESSURE REGULATOR WITH OVER-PRESSURE DEVICE 210D AND IMBLUE TECHNOLOGY, 1-1/4" INLET AND OUTLET SIZE, 1,250 CFH CAPACITY AT 5 PSI INLET PRESSURE AND SET AT 11"W.C. OUTLET PRESSURE MAXITROL #325-5L48 (OR EQUAL) CSA 6.22/ANSI Z21.80 LISTED GAS PRESSURE REGULATOR WITH LARGE GREENHOUSE(S) OVER-PRESSURE DEVICE AND IMBLUE TECHNOLOGY, 3/4" INLET AND OUTLET SIZE, 320 CFH CAPACITY AT 5 PSI INLET PRESSURE AND SET AT 11"W.C. OUTLET PRESSURE

1/2" PLUGGED TEE -FOR PRESSURE GAUGE REDUCER (TYP.) -- PLUG VALVE (TYP.) GAS OUTLET DOWN – 5 PSI GAS INLET. BELOW GRADE TO REFER TO PLAN FOR BUILDING RISER. REFER TO SIZE UNION PLAN FOR SIZE (TYP.) GAS PRESSURE REGULATOR SET 12"-24" AFG. REFER TO UTILITY PLAN FOR MODEL#

GAS PRESSURE REGULATOR VALVE DETAIL

NOT TO SCALE

GAS PIPING, INSIDE BUILDING AND ABOVE GRADE, 2" AND SMALLER: SCHEDULE 40 GALVANIZED STEEL PIPE, ASTM A53. 150 PSI GALVANIZED MALLEABLE IRON SCREWED FITTINGS, ANSI B16.3, ANSI B31.8. FLEXIBLE CONNECTIONS SHALL BE CORRUGATED STAINLESS STEEL, CSA (US) APPROVED.

2. GAS PIPING, OUTSIDE OF BUILDING, BELOW GRADE: POLYETHYLENE PIPE AND FITTINGS, ANSI B31.8, ASTM D2513, WHERE ALLOWED BY ADMINISTRATIVE AUTHORITY, DRISCOPING 6500, DUPONT ALDYL "A", PLEXCO. OTHERWISE, PIPING SHALL BE COATED SCHEDULE 40 STEEL, ASTM A53.

GAS NOTES:

. BALL VALVE, SHUT-OFF VALVE: FULL PORT, LEAD-FREE BRASS BODY, CAP, STEM, DISK, AND BALL. SCREWED CONNECTION, LEVER HANDLE, PTFE SEAT AND STEM PACKING. MIN. 400 PSI CWP. CSA-US AND UL LISTED. NIBCO T-FP-600A-LF OR APPROVED EQUAL.

ON DRAWINGS, AMERICAN METER.

I. GAS PRESSURE REDUCING VALVE: CAPACITY AND PRESSURE RATINGS AS INDICATED

GAS PIPING INSTALLATION SHALL COMPLY WITH CPC AND NFPA 54 (NATIONAL FUEL GAS CODE). SHALL BE PITCHED TO DRAIN TO DRIP LEGS AT LOW POINTS WHERE OTHER THAN DRY GAS CONDITIONS EXIST. NO UNIONS SHALL BE INSTALLED EXCEPT AT CONNECTIONS TO EQUIPMENT. PROVIDE SHUTOFF AND DIRT LET (SEDIMENT TRAP) AT EACH EQUIPMENT CONNECTION. ONLY EQUIPMENT MOUNTED ON VIBRATION ISOLATORS SHALL BE CONNECTED WITH FLEXIBLE CONNECTORS. UNDER-FLOOR PIPING SHALL BE SLEEVED AND VENTED. PLASTIC PIPE AND FITTINGS SHALL BE JOINED IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS. METAL TO PLASTIC TRANSITION FITTINGS SHALL BE INSTALLED AT ALL TRANSITIONS. PROVIDE 14-GAGE INSULATED TRACER WIRE SECURED TO PIPE AT 10' INTERVALS WITH NYLON TIES. TERMINATE TRACER 6" ABOVE GRADE AT BOTH ENDS.

ODOR FADE WARNING: THE ODORANT IN PROPANE (LP) AND NATURAL GAS IS COLORLESS AND THE INTENSITY OF ITS ODOR CAN FADE UNDER SOME CIRCUMSTANCES. CONTACT THE UTILITY COMPANY FOR MORE INFORMATION.

SUBMIT INSTALLER TRAINING CERTIFICATIONS FROM POLYETHYLENE PIPING MANUFACTURER CERTIFIED TRAINER, INCLUDING COPY OF TRAINERS CERTIFICATION. TRAINING SHALL HAVE BEEN COMPLETED NO MORE THAN 6 MONTHS PRIOR TO STARTING WORK.

8. TESTING: THERE SHALL BE NO DROP IN PRESSURE DURING TEST EXCEPT THAT DUE TO AMBIENT TEMPERATURE CHANGES. ALL COMPONENTS OF SYSTEM NOT RATED FOR TEST PRESSURE SHALL BE ISOLATED FROM THE SYSTEM BEFORE TEST IS MADE. MAINTAIN 100 PSI AIR PRESSURE FOR 4 HOURS.

SHUT-OFF VALVE IN BOX DETAIL NOT TO SCALE

INTERIOR HOSE BIB DETAIL

NOT TO SCALE

SECURE HOSE

BIBB TO WALL

FINISHED GRADE - ELKAY OUTDOOR EZH20 — **BOTTLE FILLING STATION** PEDESTAL MODEL LK4400BFFRK PLAN VIEW PRECAST CONCRETE -COVER FOUR (4) 1/2" X 3-1/2" -'HILTI' KB-TZ2 WASTE LINE FROM EXPANSION ANCHORS. DRINKING FOUNTAIN & INSTALL PER ICC ESR-4266. MINIMUM 2-1/2" EMBEDMENT. G5 CHRISTY VALVE BOX WITH CAST IRON LID OR APPROVED BY ENGINEER 8" CONCRETE SLAB WASTE LINE 1-1/4" IPS MINIMUM TO DRY WELL7"Ø MAX. INTERNAL PEDESTAL MOUNTING DETAIL NOTES:

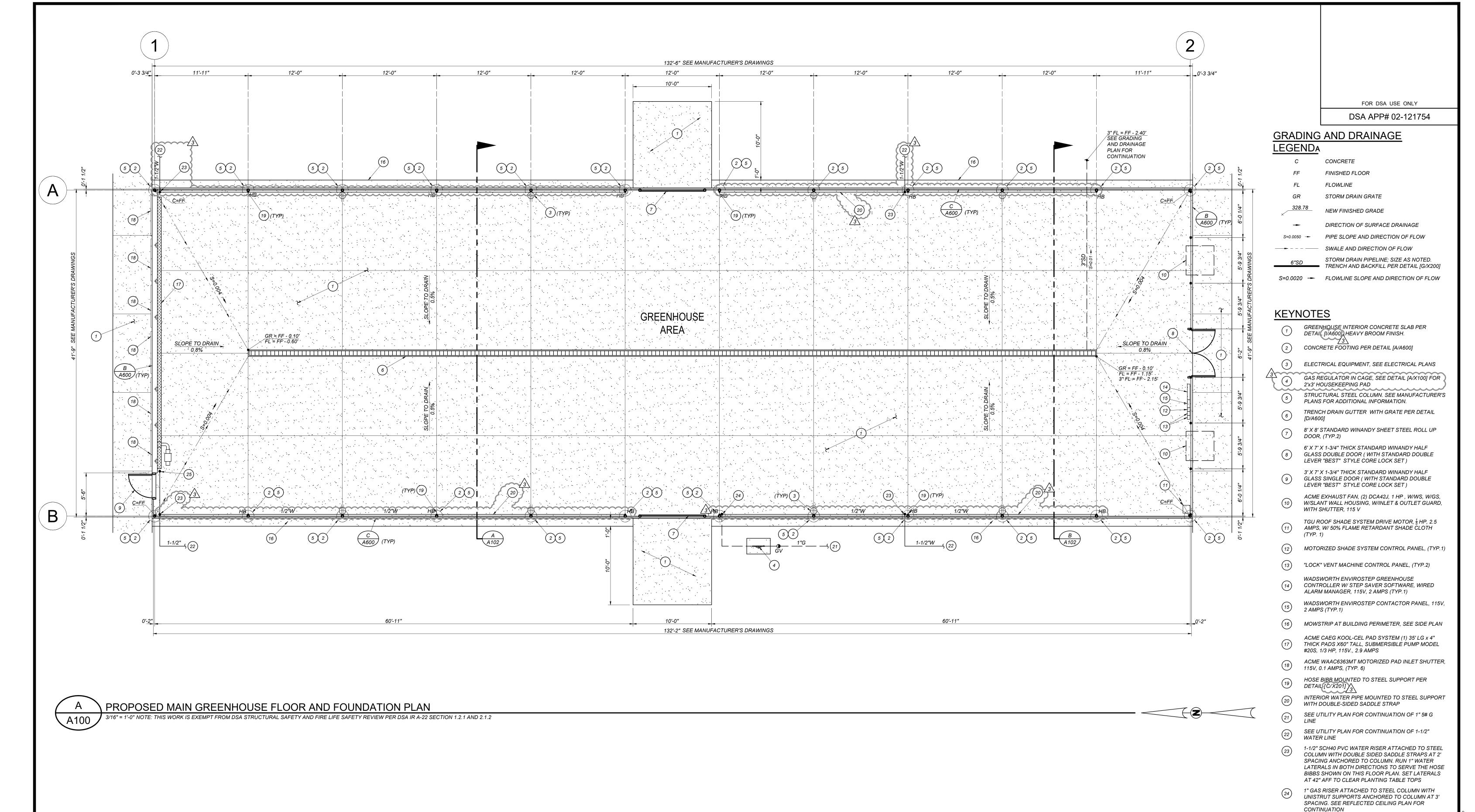
1. SEE THE SITE PLANS AND UTILITY PLANS FOR DRINKING FOUNTAIN LOCATIONS, AND THE LAYOUT SHOWING 6" OF 1-1/2" RIVER — ROCK AT BOTTOM CONFORMANCE WITH ADA ACCESS REQUIREMENTS (30"X48" WHEELCHAIR SPACE). 2. DRINKING FOUNTAINS SHALL HAVE A POWDER-COAT FINISH TO MATCH THE SCHOOL COLORS.

3. FORWARD APPROACH WITH MINIMUM 17" CLEAR 24" DIAMETER CONCRETE PIPE GROUND SPACE UNDER AND CENTERED ON THE UNIT REQUIRED (11B-602.2) 4. OWNER TO SPECIFY COLOR - CONNECT TO SUPPLY **BOTTLE FILLING STATION** DRY WELL NOT TO SCALE NOT TO SCALE

CONSULTING ENGINEERS

MERCED COLLEGE GREENHOUSE COMPLEX

GREENHOUSE COMPLEX CONST. DOCUMENTS

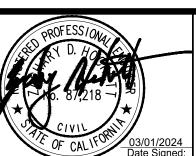

DATE: 03/01/2024 SCALE AS NOTED

FOR DSA USE ONLY

DSA APP# 02-121754

BIDDING
ADDENDUM 03

UTILITY DETAILS



GREENHOUSE NOTESA

Blair,

GREENHOUSE STRUCTURE AND EQUIPMENT SHALL BE INSTALLED PER THE MANUFACTURER'S INSTALLATION INSTRUCTIONS AND GUIDELINES. IF THERE IS A DISCREPANCY BETWEEN THESE PLANS AND THE MANUFACTURER'S INSTRUCTIONS, THE MANUFACTURER'S INSTRUCTIONS SHALL GOVERN. CONTRACTOR SHALL BRING ALL DISCREPANCIES TO THE ATTENTION OF THE ENGINEER OF RECORD PRIOR TO STARTING CONSTRUCTION.

MERCED COLLEGE GREENHOUSE COMPLEX

GREENHOUSE COMPLEX MAIN GREENHOUSE

CONST. DOCUMENTS

A100 SCALE AS NOTED

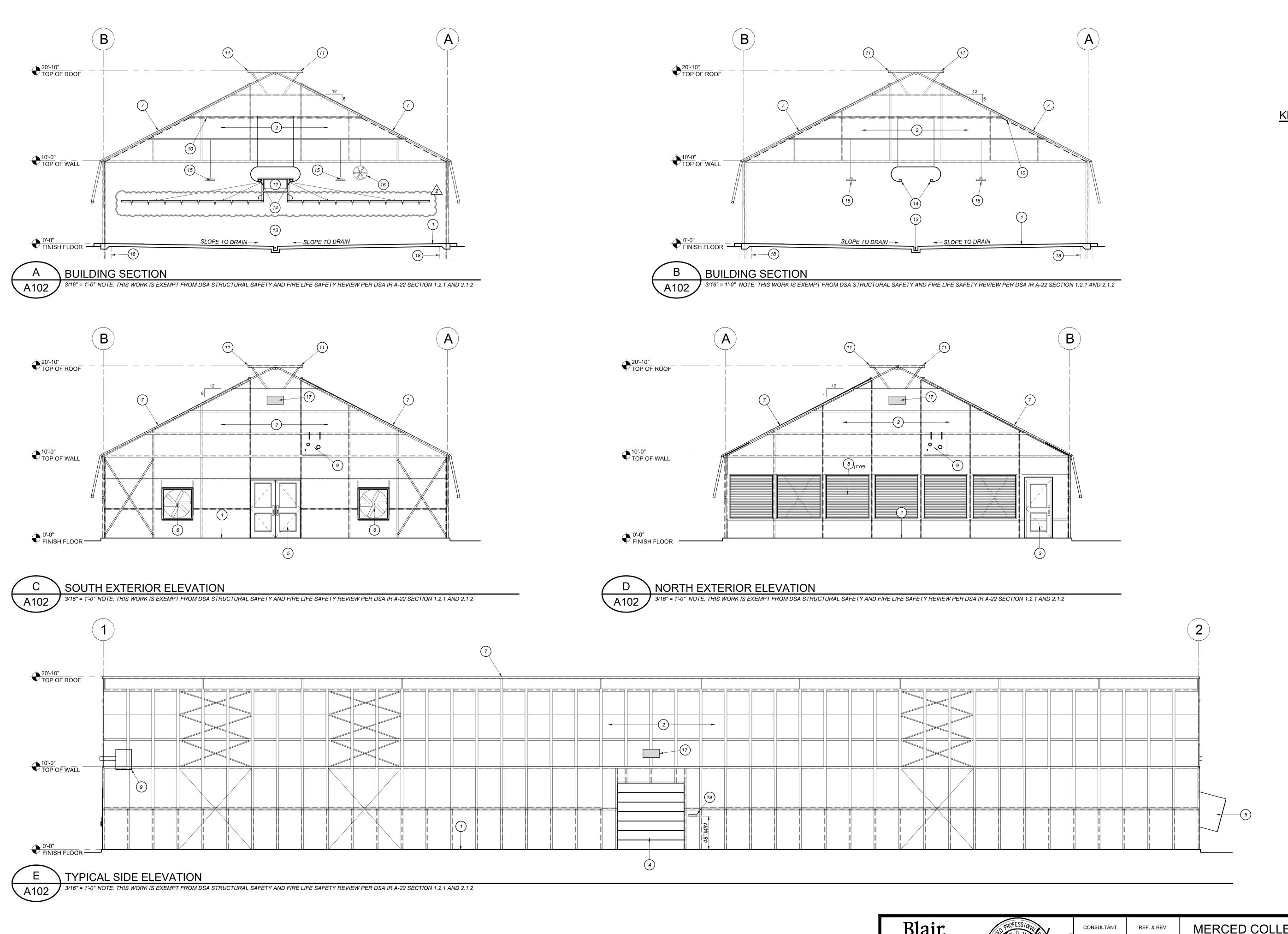
CONSULTING ENGINEERS

BIDDING
ADDENDUM 03

FLOOR & FOUNDATION PLANS

DR. BY: <u>AH</u>
CH. BY: <u>ZH</u>
DATEA <u>03/01/2024</u>

1-1/2" SCH40 PVC WATER RISER ATTACHED TO STEEL COLUMN WITH DOUBLE SIDED SADDLE STRAPS AT 2' SPACING ANCHORED TO COLUMN. RUN RISER UP TO


SERVE THE KOOL-CELL EVAPORATIVE COOLING

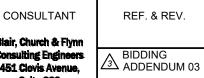
LATERALLY TO SERVE THE SPRAY BOOM HOSE

COORDINATE WITH SPRAY BOOM INSTALLATION

CONNECTION ON THE NORTH END WALL.

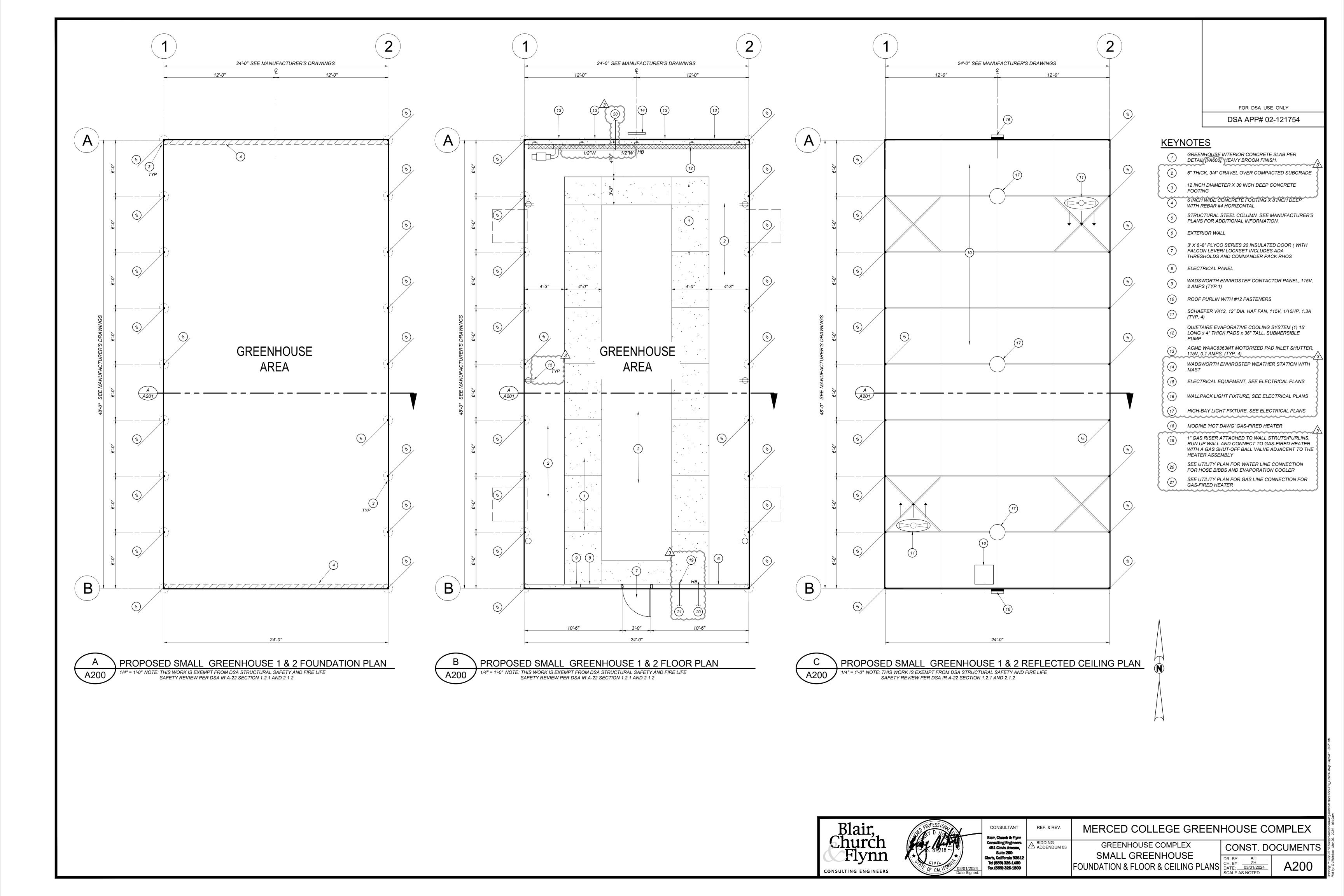
SYSTEM AND THEN UP INTO ROOF FRAMING AND

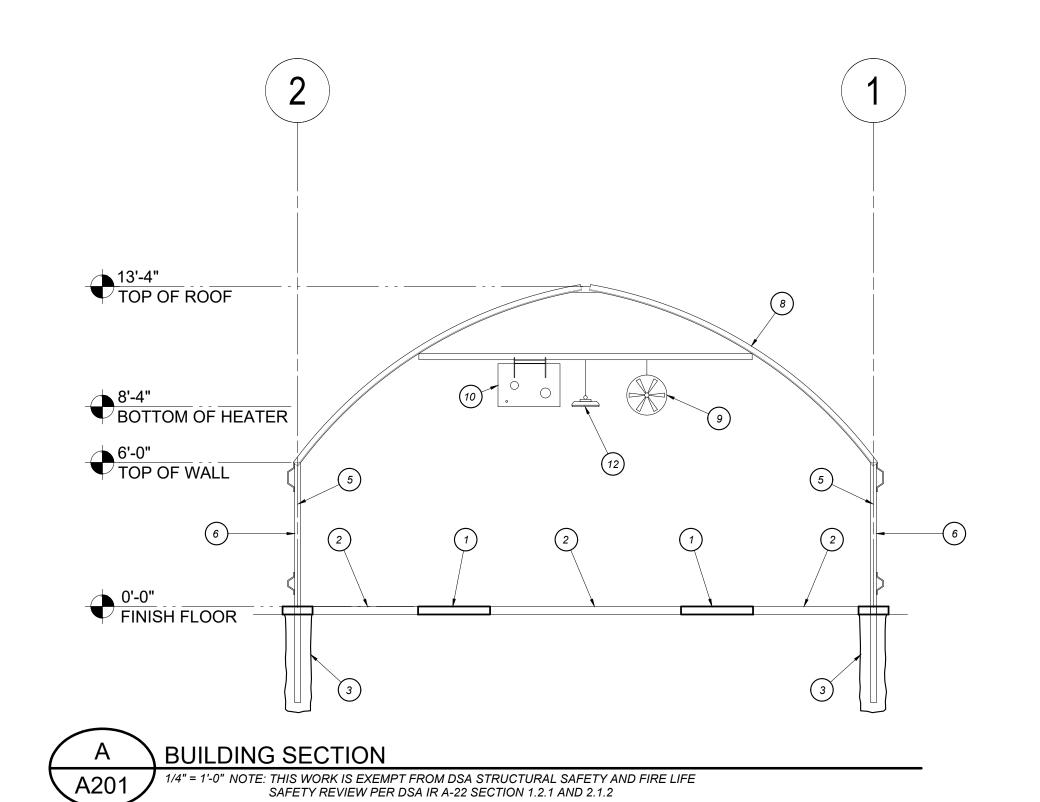
FOR DSA USE ONLY DSA APP# 02-121754

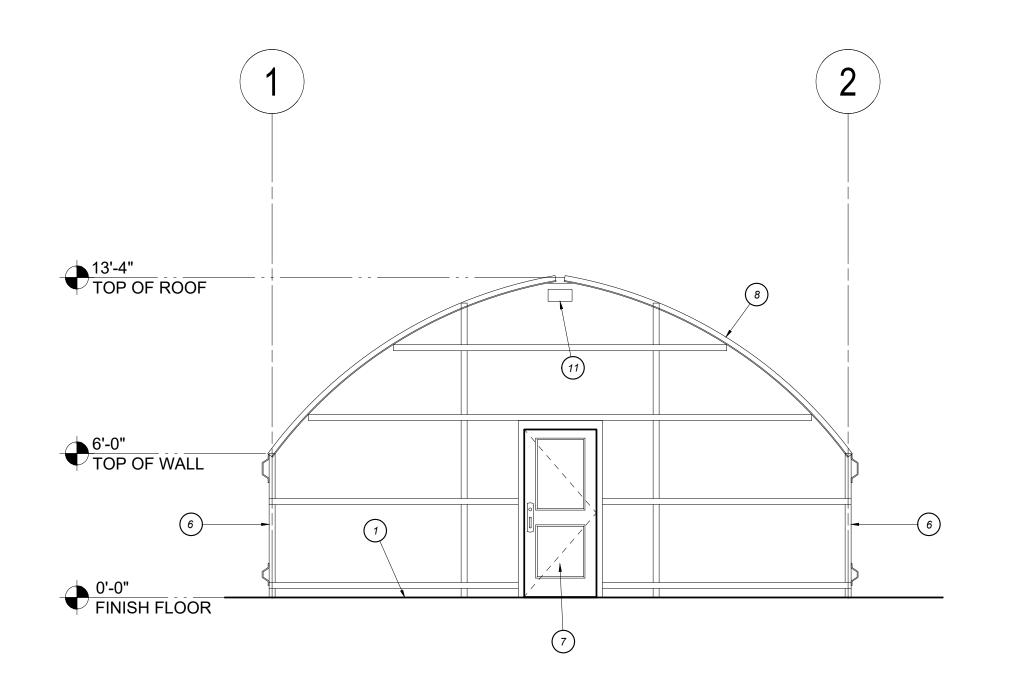

KEYNOTES

- 1 GREENHOUSE INTERIOR CONCRETE SLAB PER DETAIL [1/A600], HEAVY BROOM FINISH.
- STRUCTURAL STEEL FRAMING. SEE MANUFACTURER'S PLANS FOR ADDITIONAL INFORMATION.
- 3' X 7' X 1-3/4" THICK STANDARD WINANDY HALF GLASS SINGLE DOOR (WITH STANDARD DOUBLE LEVER "BEST" STYLE CORE LOCK SET)
- 8' X 8' STANDARD WINANDY SHEET STEEL ROLL UP DOOR, (TYP.2)
- 6' X 7' X 1-3/4" THICK STANDARD WINANDY HALF GLASS DOUBLE DOOR (WITH STANDARD DOUBLE LEVER "BEST" STYLE CORE LOCK SET)
- ACME EXHAUST FAN, (2) DCA42J, 1 HP , W/WS, W/GS, W/SLANT WALL HOUSING, W/INLET & OUTLET GUARD, WITH SHUTTER, 115 V
- ROOF PURLIN WITH #12 FASTENERS
- ACME WAAC6363MT MOTORIZED PAD INLET SHUTTER, 115V, 0.1 AMPS, (TYP. 6)
- MODINE PTP300S GAS FIRED HEATER
- TGU MOTORIZED SHADE SYSTEM WITH ALUMINET 50% ICFR SHADE CLOTH SHOWN DASHED
- 36" ELECTRIC MOTORIZED RACK & PINION RIDGE VENTS, SEE MANUFACTURER'S PLANS
- CHERRY CREEK WATERING BOOM WITH BALDOR DC AND CHAIN DRIVE-1/4 HP, 2.5 AMPS (2 ROWS) SINGLE WATER BAR SETUP WITH TEEJET SPRAYS (0.8GPM) EVERY 18", WHIP HOSE WATERING ASSEMBLY COMPASS CAPTURE CONTROLLER W/ AREA CAPTURE PROGRAM.
- TRENCH DRAIN GUTTER GRATE PER DETAIL [D/A600]
- 2" X 2" SQ. STEEL WATERING BOOM TRACK
- HIGH-BAY LIGHT FIXTURE, SEE ELECTRICAL PLANS
- SCHAEFER VK12, 12" DIA. HAF FAN, 115V, 1/10HP, 1.3A
- WALLPACK LIGHT FIXTURE, SEE ELECTRICAL PLANS
- COLUMN FOOTINGS WHERE THEY OCCUR
- MOUNT SIGN TO WALL ADJACENT TO ROLL UP DOOR THAT READS "MAINTENANCE ACCESS ONLY" SIGN SHALL BE WHITE BACKGROUND WITH 1" HIGH LETTERING THAT COMPLIES WITH SECTION 11B-703 OF

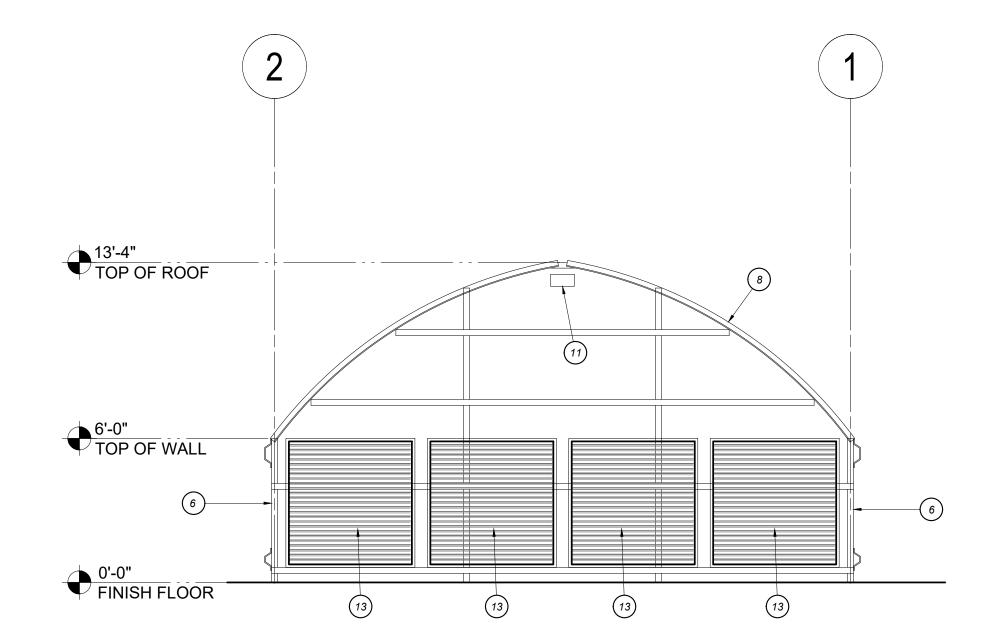
CONSULTING ENGINEERS

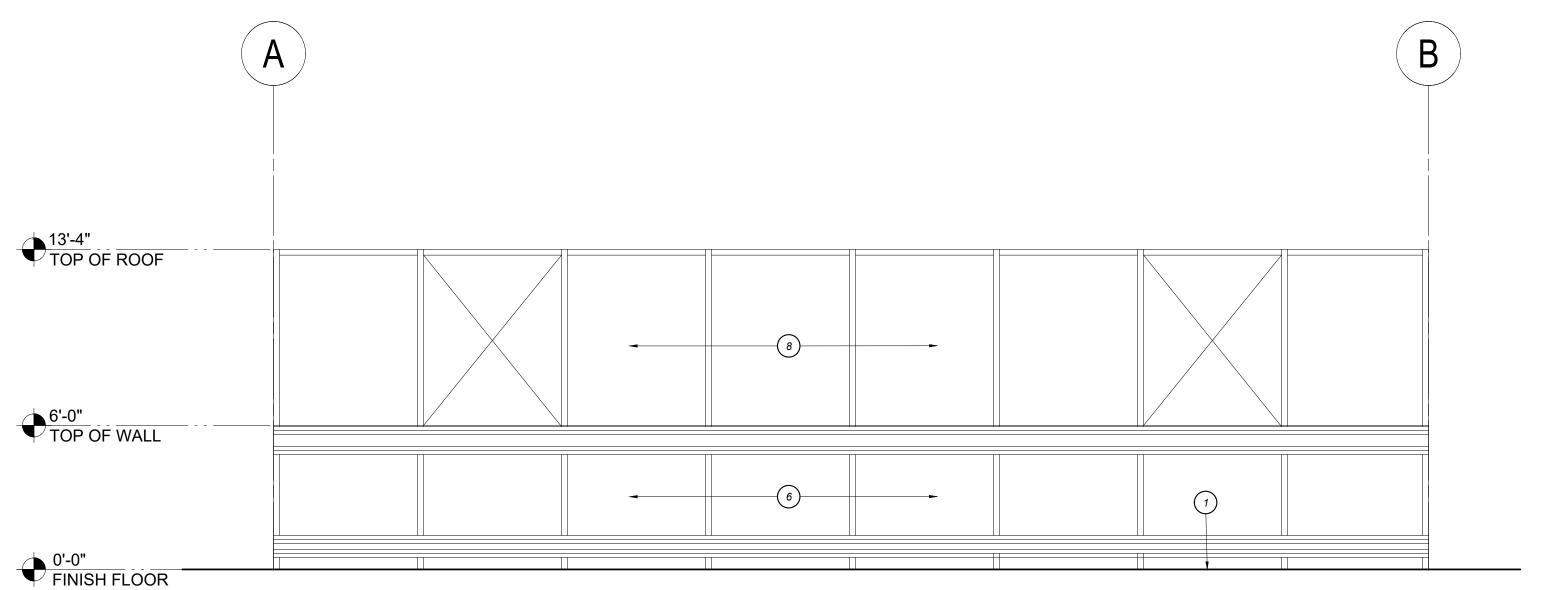




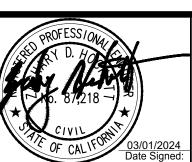

MERCED COLLEGE GREENHOUSE COMPLEX

GREENHOUSE COMPLEX CONST. DOCUMENTS MAIN GREENHOUSE **ELEVATIONS & SECTION**


A102



SOUTH EXTERIOR ELEVATION 1/4" = 1'-0" NOTE: THIS WORK IS EXEMPT FROM DSA STRUCTURAL SAFETY AND FIRE LIFE SAFETY REVIEW PER DSA IR A-22 SECTION 1.2.1 AND 2.1.2



EAST/ WEST EXTERIOR ELEVATION 1/4" = 1'-0" NOTE: THIS WORK IS EXEMPT FROM DSA STRUCTURAL SAFETY AND FIRE LIFE SAFETY REVIEW PER DSA IR A-22 SECTION 1.2.1 AND 2.1.2

BIDDING
ADDENDUM 03

MERCED COLLEGE GREENHOUSE COMPLEX GREENHOUSE COMPLEX

CONST. DOCUMENTS SMALL GREENHOUSE DR. BY: ____AH____ CH. BY: ___ZH____ DATE: ___03/01/2024_ SCALE AS NOTED **ELEVATIONS & SECTIONS**

FOR DSA USE ONLY

DSA APP# 02-121754

GREENHOUSE INTERIOR CONCRETE SLAB PER DETAIL [I/A600], HEAVY BROOM FINISH.

2 6" THICK, 3/4" GRAVEL OVER COMPACTED SUBGRADE

12 INCH DIAMETER X 30 INCH DEEP CONCRETE

6 INCH WIDE CONCRETE FOOTING X 8 INCH DEEP WITH REBAR #4 HORIZONTAL

STRUCTURAL STEEL COLUMN. SEE MANUFACTURER'S PLANS FOR ADDITIONAL INFORMATION.

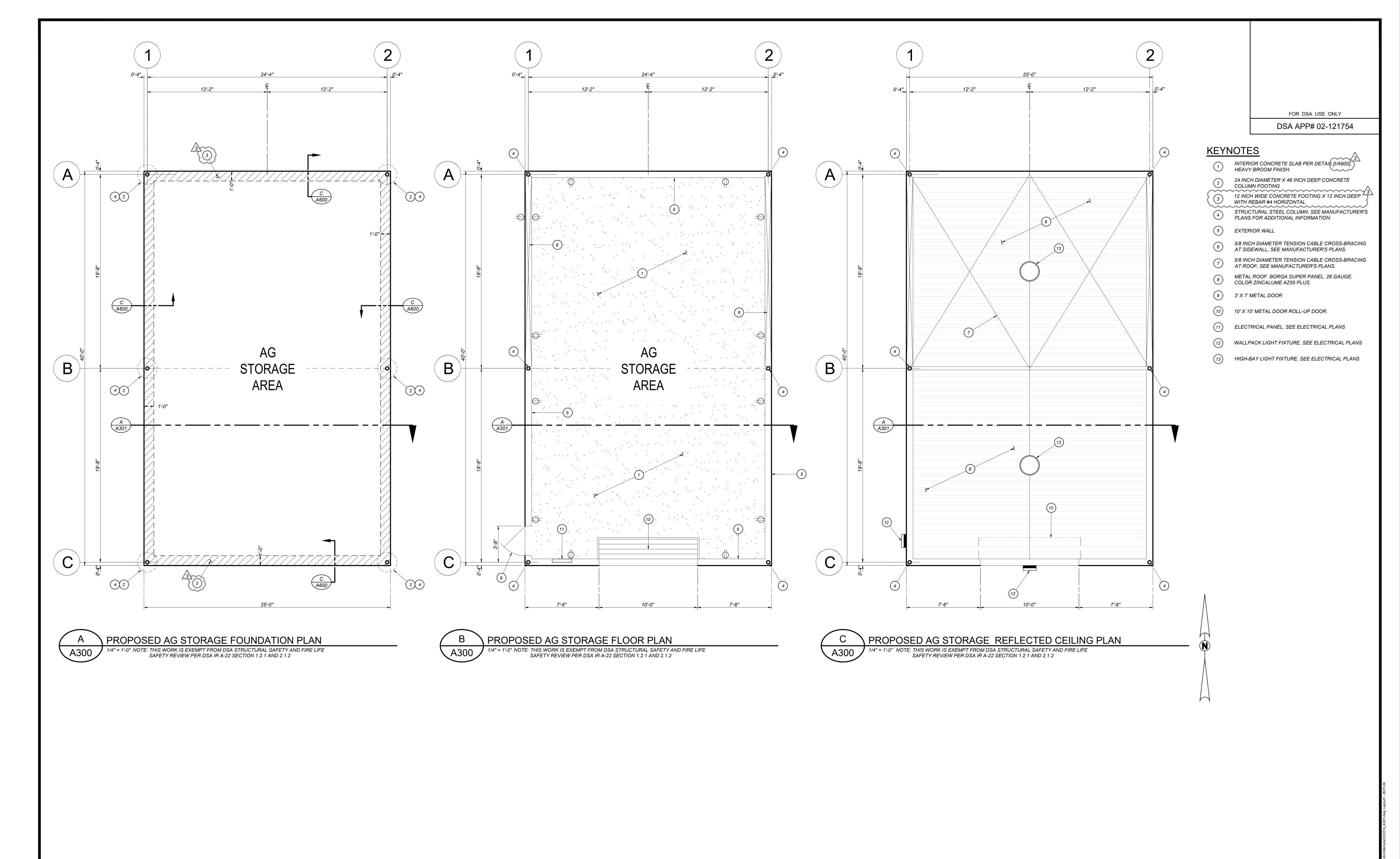
3' X 6'-8" PLYCO SERIES 20 INSULATED DOOR (WITH FALCON LEVER/ LOCKSET INCLUDES ADA THRESHOLDS AND COMMANDER PACK RHOS

SCHAEFER VK12, 12" DIA. HAF FAN, 115V, 1/10HP, 1.3A (TYP. 4)

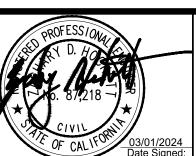
ACME WAAC6363MT MOTORIZED PAD INLET SHUTTER, 115V, 0.1 AMPS, (TYP. 4)

8 ROOF PURLIN WITH #12 FASTENERS

(10) MODINE 'HOT DAWG' GAS-FIRED HEATER

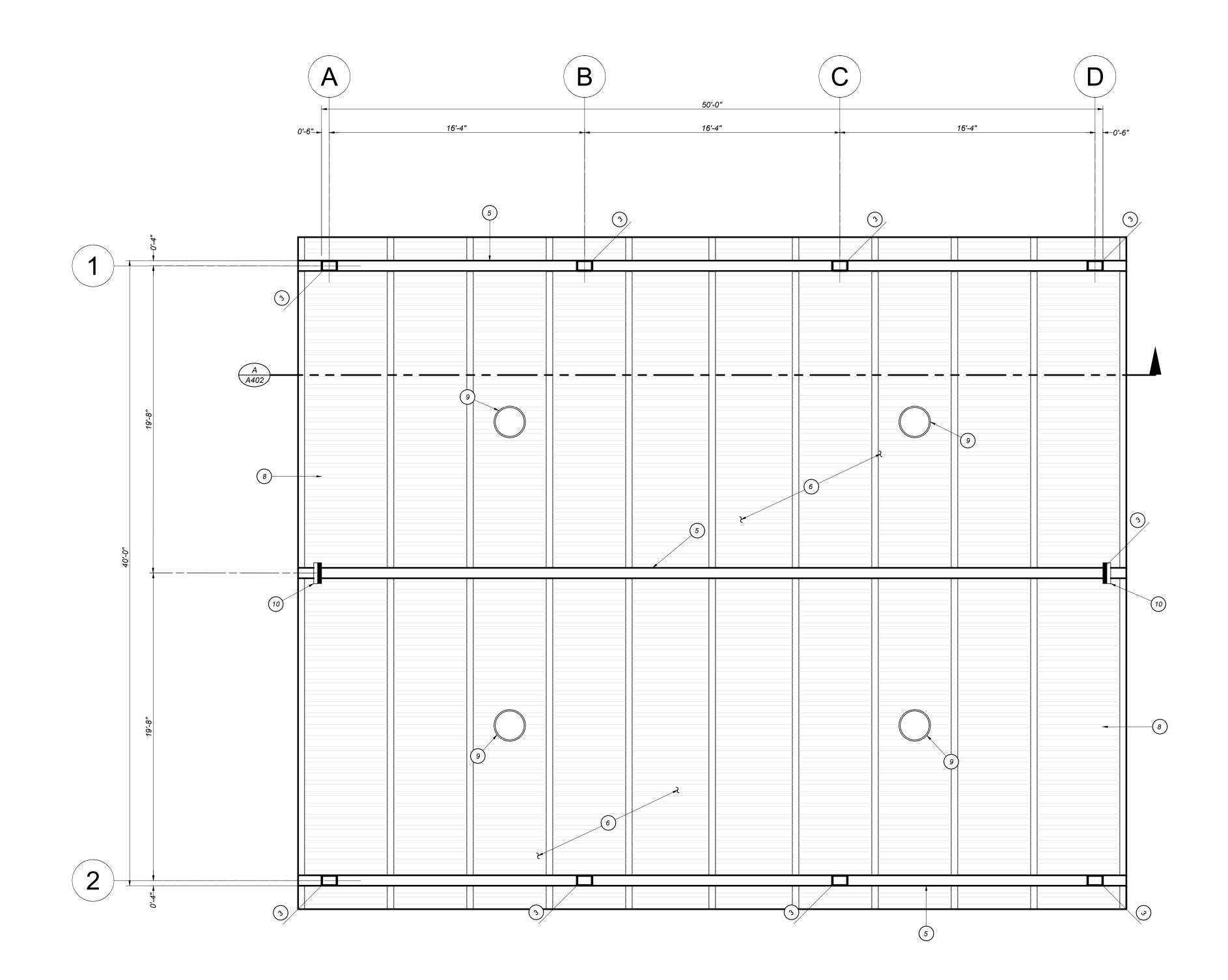

KEYNOTES

3 12 INCH DIAM FOOTING


(6) EXTERIOR WALL

11) 100 W LED WALLPACK

12) 150 W HIGH-BAY LED



BIDDING
ADDENDUM 03

MERCED COLLEGE GREENHOUSE COMPLEX

GREENHOUSE COMPLEX **AG STORAGE**

CONST. DOCUMENTS

PROPOSED POTTING SHADE REFLECTED CEILING PLAN

BIDDING
ADDENDUM 03

MERCED COLLEGE GREENHOUSE COMPLEX GREENHOUSE COMPLEX

CONST. DOCUMENTS POTTING SHADE **CEILING PLAN**

FOR DSA USE ONLY

DSA APP# 02-121754

CONCRETE SIDEWALK PER DETAIL [A/X100]

STRUCTURAL STEEL COLUMN. SEE STRUCTURAL PLANS FOR ADDITIONAL INFORMATION.

STRUCTURAL STEEL COLUMN. SEE STRUCTURAL PLANS FOR ADDITIONAL INFORMATION.

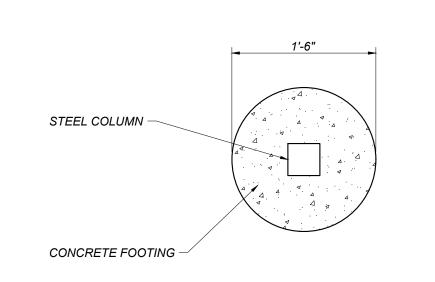
36 INCH DIAMETER X 54 INCH DEEP CONCRETE

COLUMN FOOTING

5 W14 X 22 STEEL BEAM

9 LED HIGH BAY FIXTURE

100 W LED WALLPACK LIGHT


6 8"X 2-1/2" 14 GA Z ROOF PURLIN - TYP.

8 7" WIDE ROOF GUTTER WITH 10 WIDE GRATE

7 26 GA RIBBED METAL SHEETING

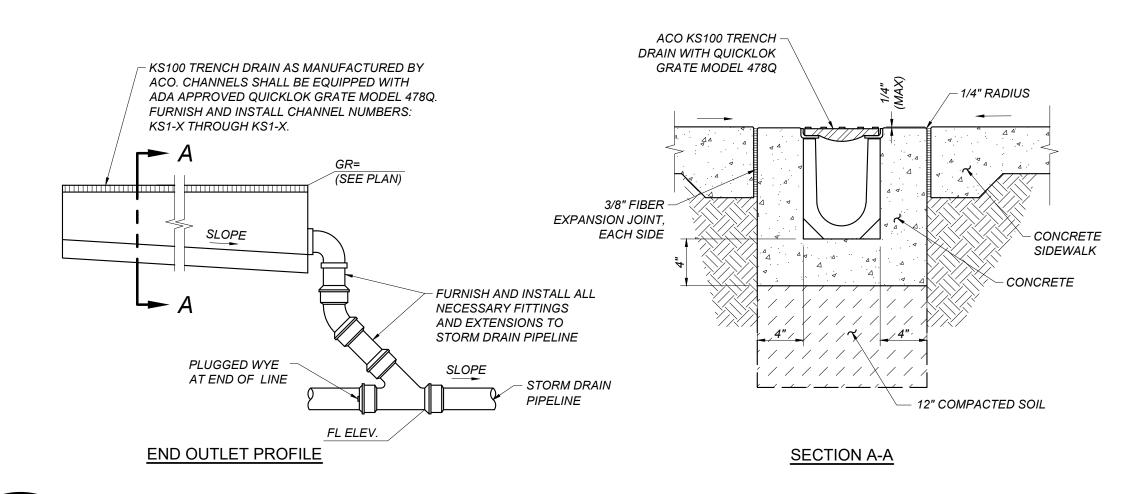
KEYNOTES

A401

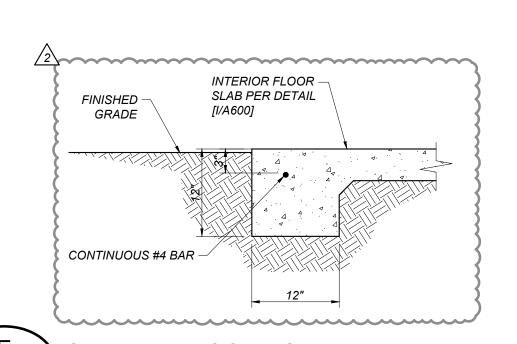
- SIDEWALL SHOVEL INTERIOR FLOOR -FOOTING IN BETWEEN SLAB PER DETAIL COLUMNS, POURED [A/X100] MONOLITHICALLY WITH COLUMN FOOTINGS COLUMN EMBEDMENT SIDEWALL FOOTING REBAR - COORDINATE CONCRETE FOOTING -WITH LOCATION OF STEEL COLUMNS 6" HIGH CMU OR -DRIED CONCRETE @ BASE OF FOOTING

LARGE GREENHOUSE COLUMN FOOTING NOTE: THIS WORK IS EXEMPT FROM DSA STRUCTURAL SAFETY AND FIRE

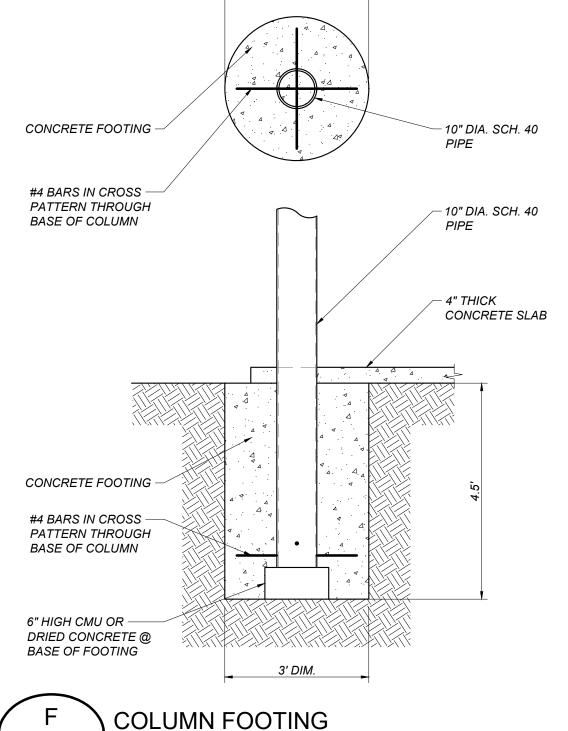
LIFE SAFETY REVIEW PER DSA IR A-22 SECTION 1.2.1 AND 2.1.2


1'-6"

INTERIOR FLOOR -SLAB PER DETAIL [A/X100] FINISHED -GRADE CONTINUOUS #4 BÁR -CONCRETE -CONTINUOUS #4 BAR -#4 BAR VERT. @ 18" -CONTINUOUS #4 BAR -

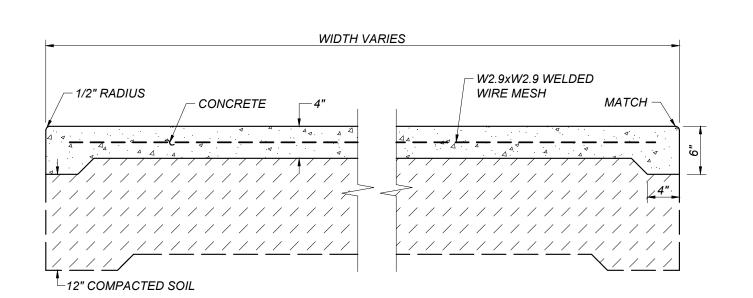

ENDWALL FOOTING NOTE: THIS WORK IS EXEMPT FROM DSA STRUCTURAL SAFETY AND FIRE LIFE SAFETY REVIEW PER DSA IR A-22 SECTION 1.2.1 AND 2.1.2

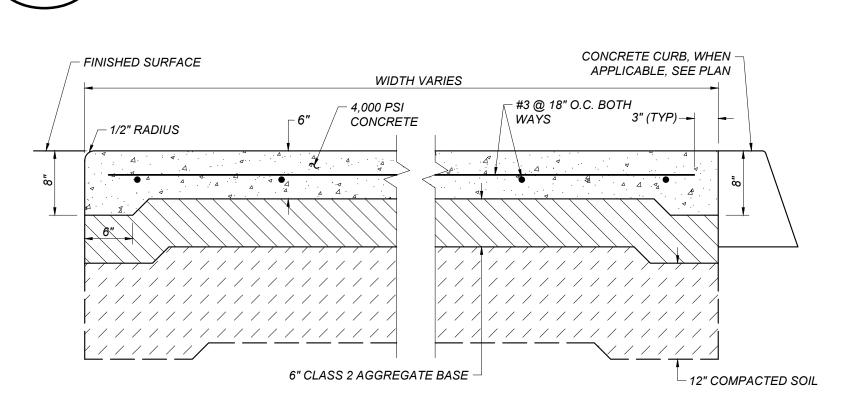
STRUCTURAL -COLUMN WHERE IT OCCURS 4" THICK CONCRETE SLAB WITH W2.9xW2.9WWM #4 REBAR 2 PLACES CONTINUOUS PERIMETER FOOTING


NOT TO SCALE NOTE: THIS WORK IS EXEMPT FROM DSA STRUCTURAL SAFETY AND FIRE LIFE SAFETY REVIEW PER DSA IR A-22 SECTION 1.2.1 AND 2.1.2

TRENCH DRAIN NOTE: THIS WORK IS EXEMPT FROM DSA STRUCTURAL SAFETY AND FIRE LIFE SAFETY REVIEW PER DSA IR A-22 SECTION 1.2.1 AND 2.1.2

SIDEWALL FOOTING NOT TO SCALE NOTE: THIS WORK IS EXEMPT FROM DSA STRUCTURAL SAFETY AND FIRE SAFETY AND FIRE LIFE SAFETY REVIEW PER DSA IR A-22 SECTION 1.2.1 AND 2.1.2


NOT TO SCALE NOTE: THIS WORK IS EXEMPT FROM DSA STRUCTURAL SAFETY AND FIRE SAFETY AND FIRE LIFE SAFETY REVIEW PER DSA IR A-22 SECTION 1.2.1 AND 2.1.2


DETAIL NOT USED

DETAIL NOT USED

MIDDLE WALL SECTION NOT TO SCALE A600

HEAVY DUTY CONCRETE PAVEMENT STRUCTURAL SECTION NOT TO SCALE

INTERIOR FLOOR SLAB

BIDDING
ADDENDUM 03

MERCED COLLEGE GREENHOUSE COMPLEX

GREENHOUSE COMPLEX CONST. DOCUMENTS FOUNDATION DETAILS

DR. BY: AH
CH. BY: ZH
DATE: 03/01/2024 SCALE AS NOTED

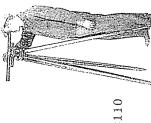
FOR DSA USE ONLY

DSA APP# 02-121754

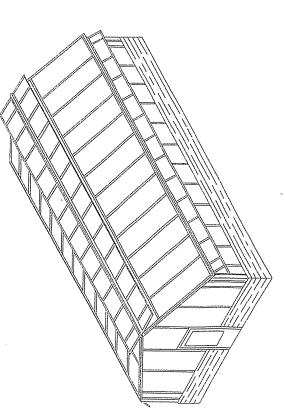
A600

Phone (765) 935-2111

SERVICE SPEED SPEED SATISFACTION WINANDY GREENHOUSE COMPANY, INC. Greenhouse Manufacturers, Builders and Heating Engineers


New

"SUN-MATE"


RICHMOND, INDIANA 47374 2211 PEACOCK ROAD SINCE 1919

Fax

ReNew

(765) 935-2110

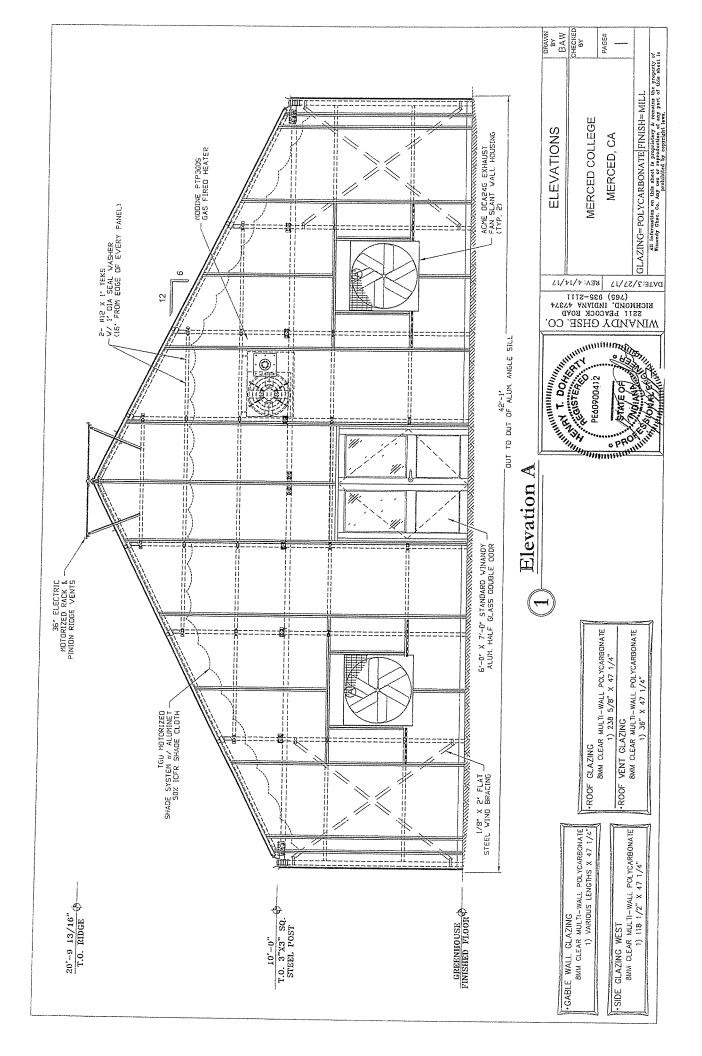
MERCED COLLEGE GREENHOUSE CALCULATIONS PAGES: 1 - 70

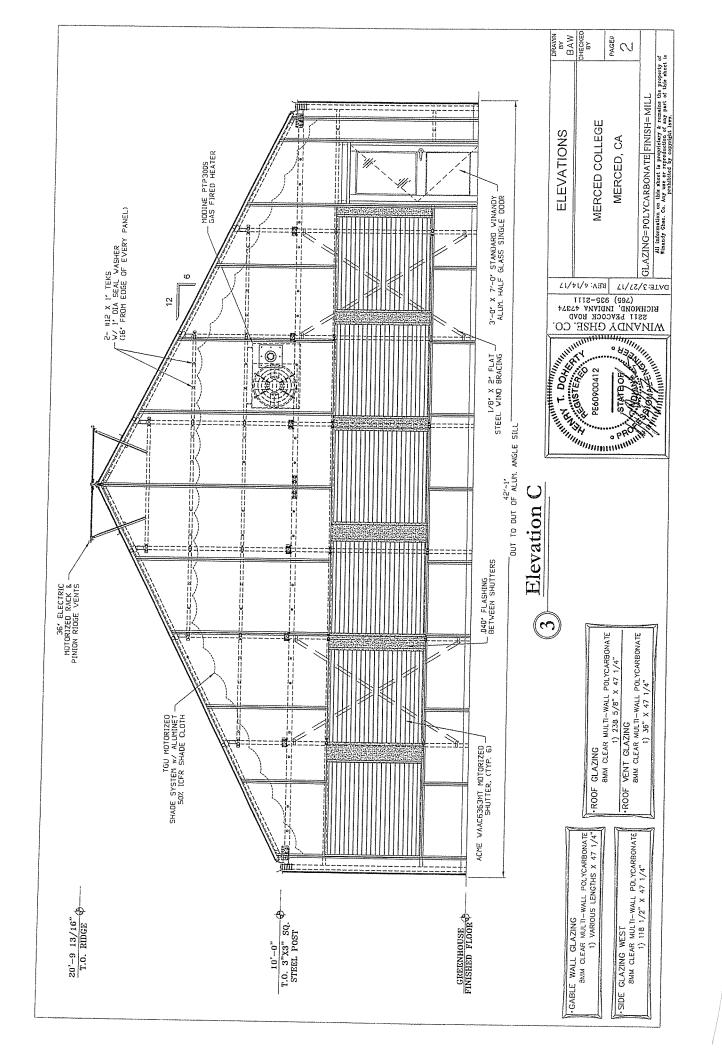
金属

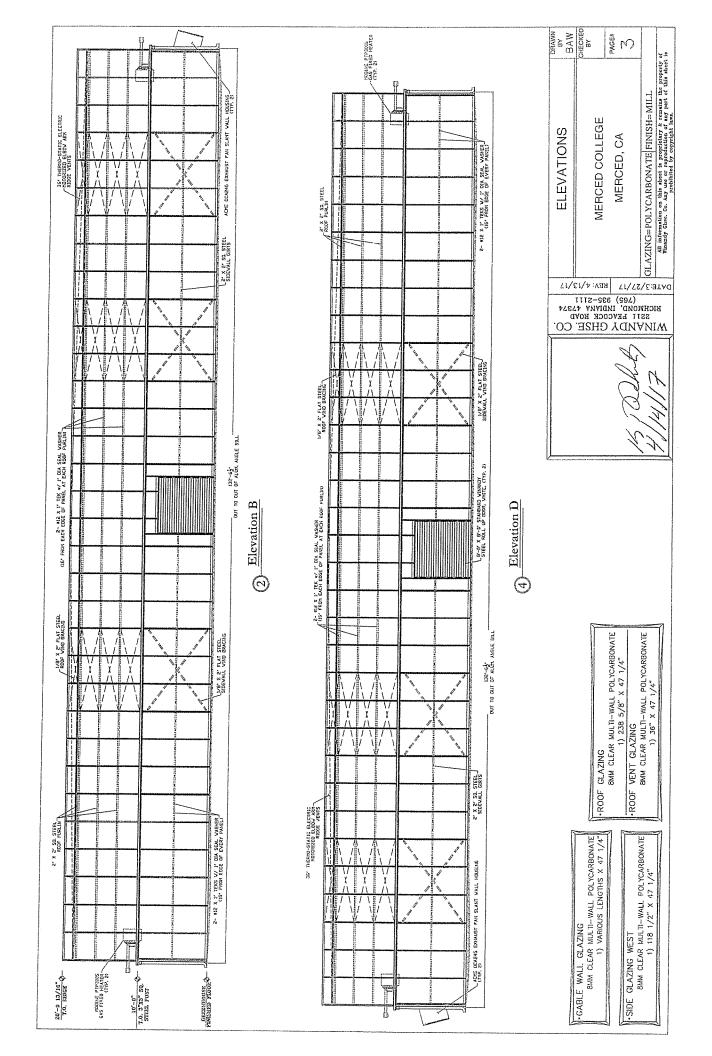
MERCED College Greenhouse

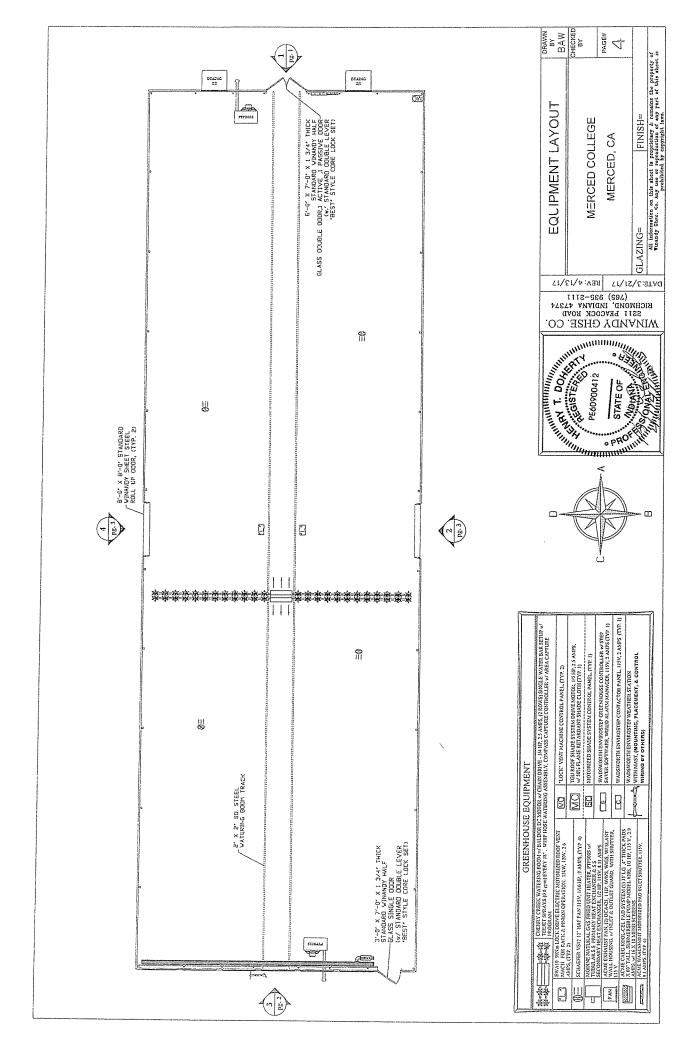
Table of Contents

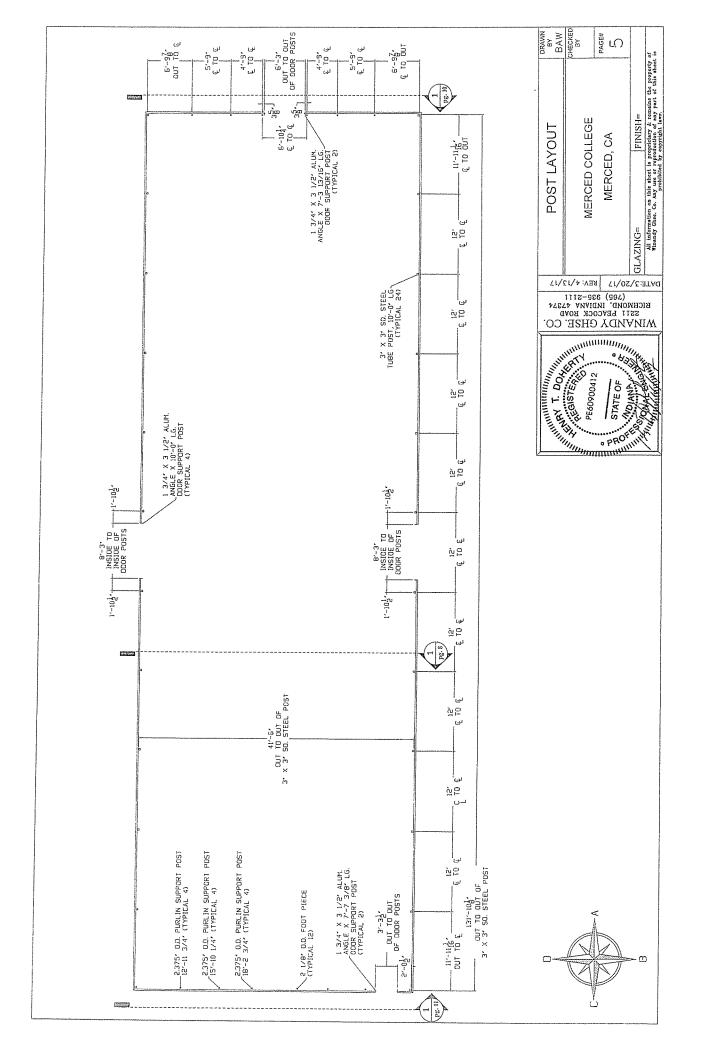
Page(s)

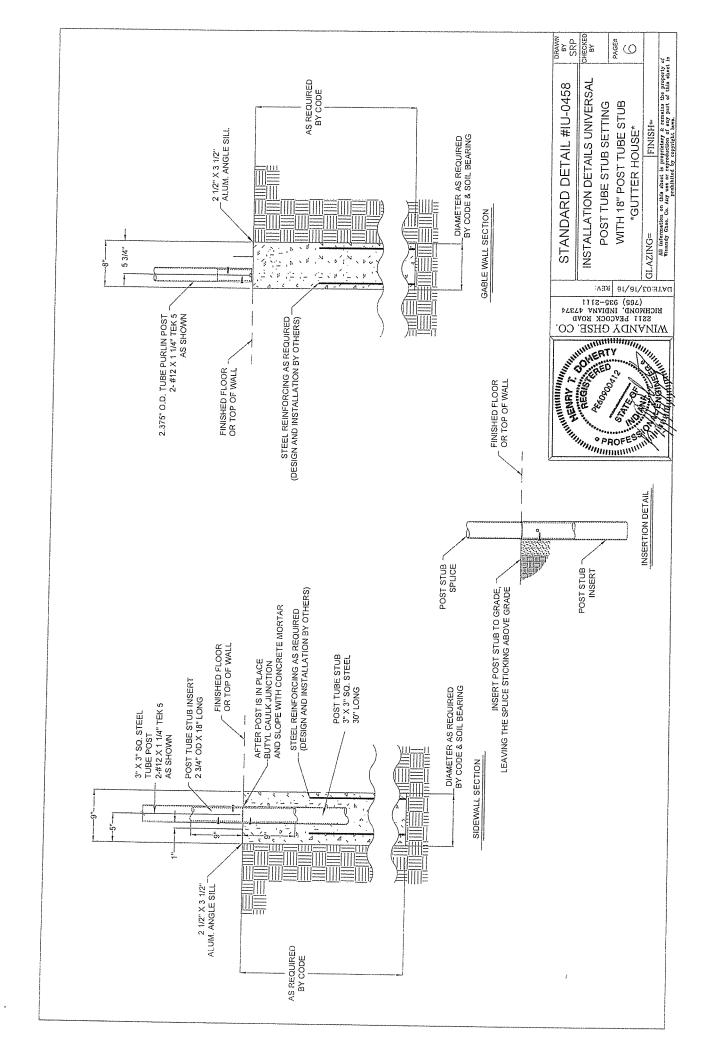

- 1 Design Summary
- 2 20 Structural Drawings
- 21 25 Design Load Criteria and Calculations
- 26 63 Load Analysis Calculations
- 64 70 Member Design Analysis

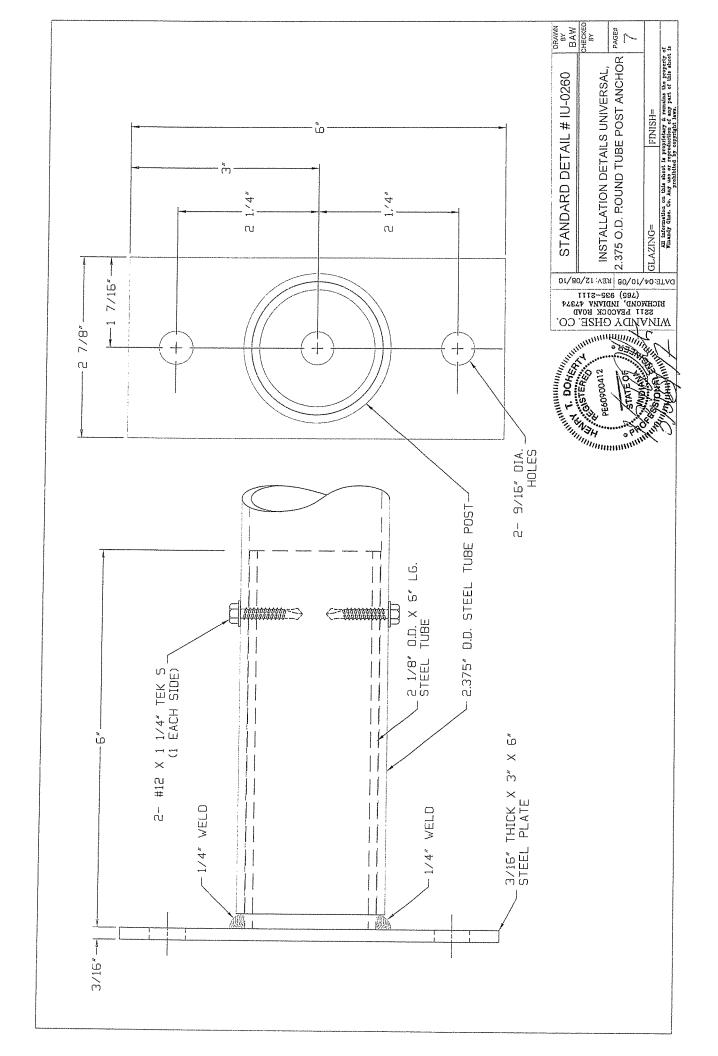

Merced College Merced, CA.

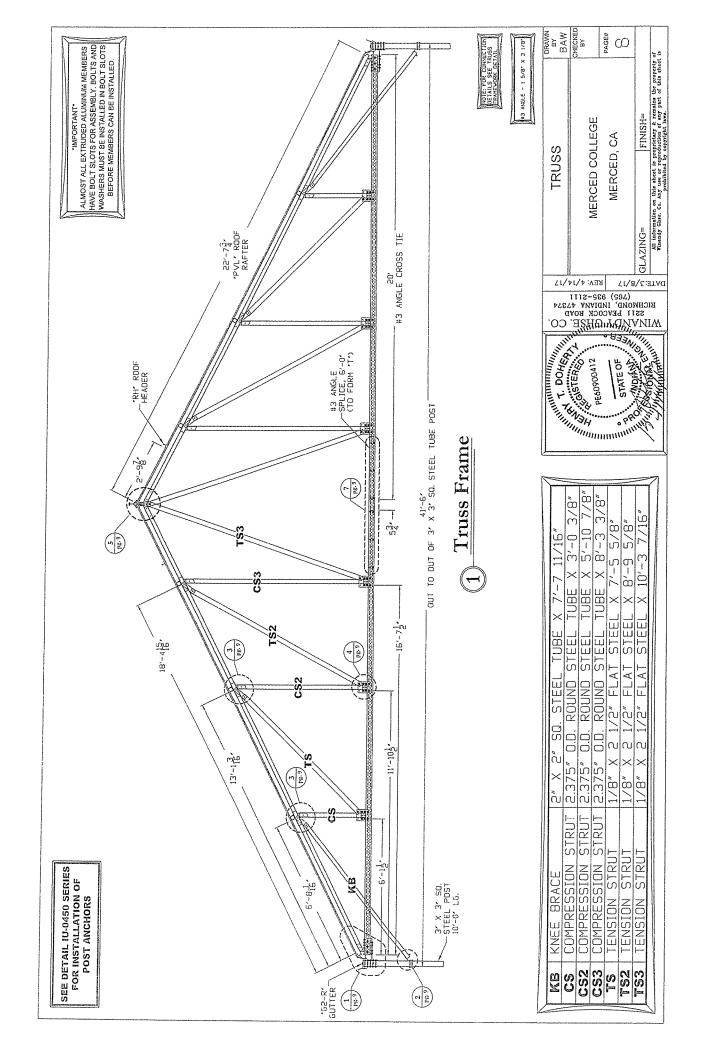

Greenhouse has been designed in accordance with the specifications.

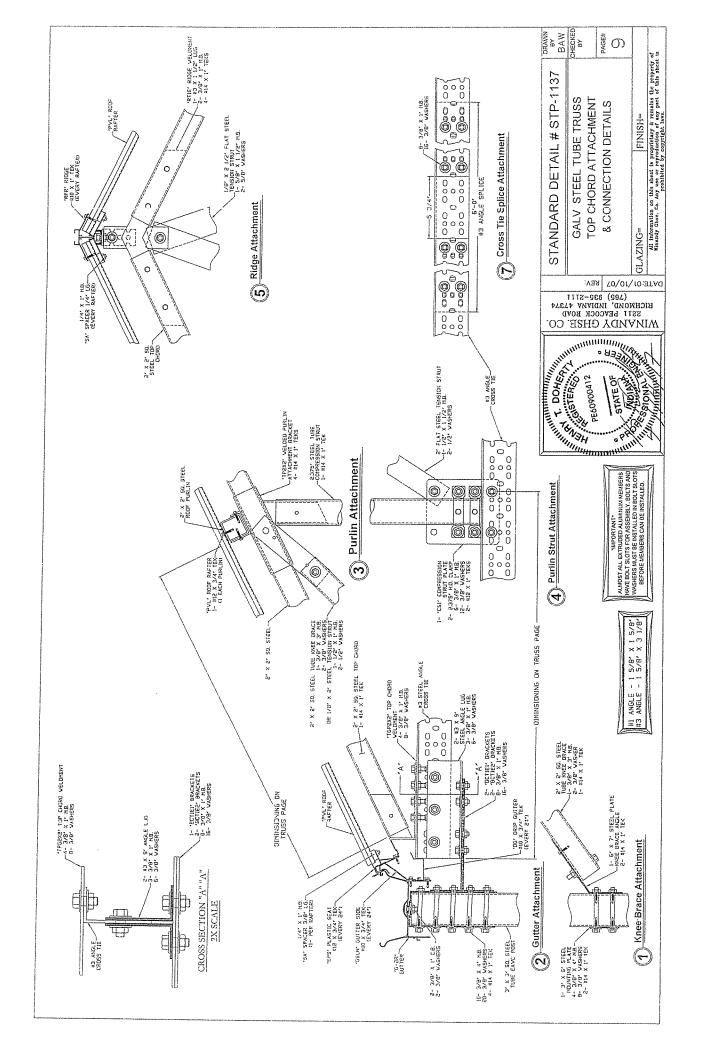

CBC/UBC/IBC Code Base 15 PSF Live Load 6 PSF Dead Load Seismic Category D 85MPH Exp. C Wind Load

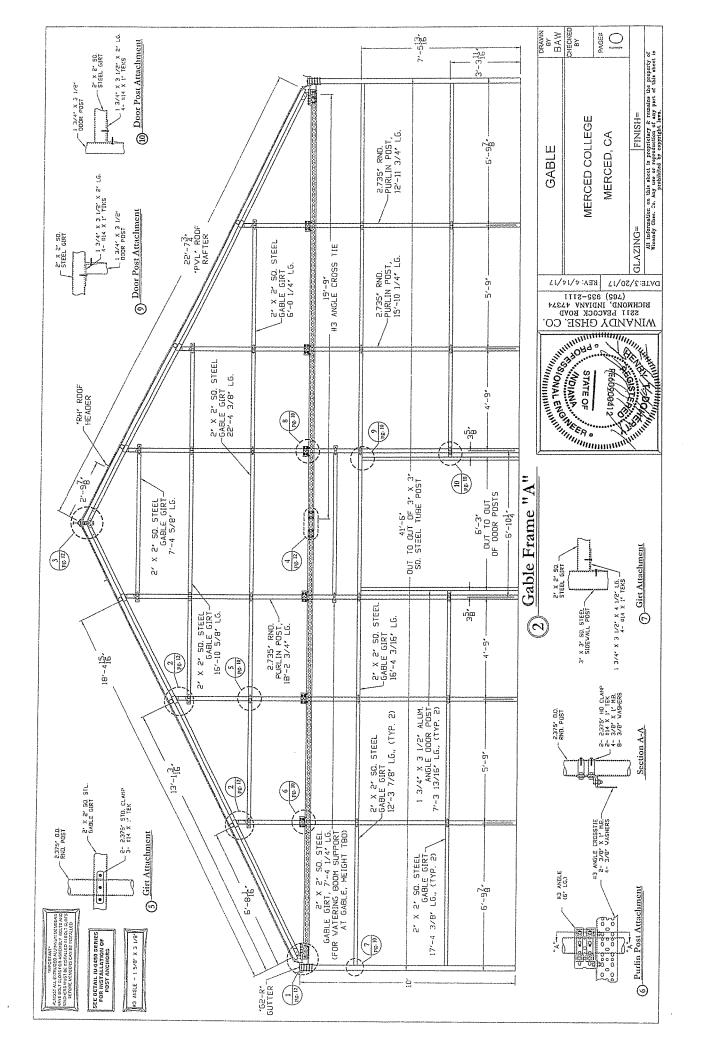

- 1] All aluminum extrusions are from 6061-T6 alloy or equivalent. Fy = 35ksi.
- 2] All Steel Tube is Hot Dipped Galvanized Coated
- 3] All Steel and Fittings are Hot Dipped Galvanized
- 4] All Steel Tubing is manufactured from 50 KSI min yield point steel, 55 KSI min yield point steel
- 5] All bolts are Hot Dipped Galvanized for corrosion resistance.
- 6] All bolts are Grade 5 equal to A-325 in strength rating.
- 7] All connections have been examined and judged to have sufficient fasteners.
- 8] Greenhouse has been designed in accordance with the specifications.
- 9] Greenhouse is to be installed onto foundation designed and installed by others. No floor load is imparted to the greenhouse structure.
- 10] The wind load is greater than the seismic load.
- 11] This greenhouse has a sloped slippery roof covered structure.
- 12] All extrusions and fittings are designed to inter-lock as much as possible to minimize fasteners and have been specially designed for structural as well as specific greenhouse functions.
- 13] All greenhouse members have been checked for ability to withstand prescribed loads.
- 14] The main greenhouse is included in this design only No foundation designs have been included

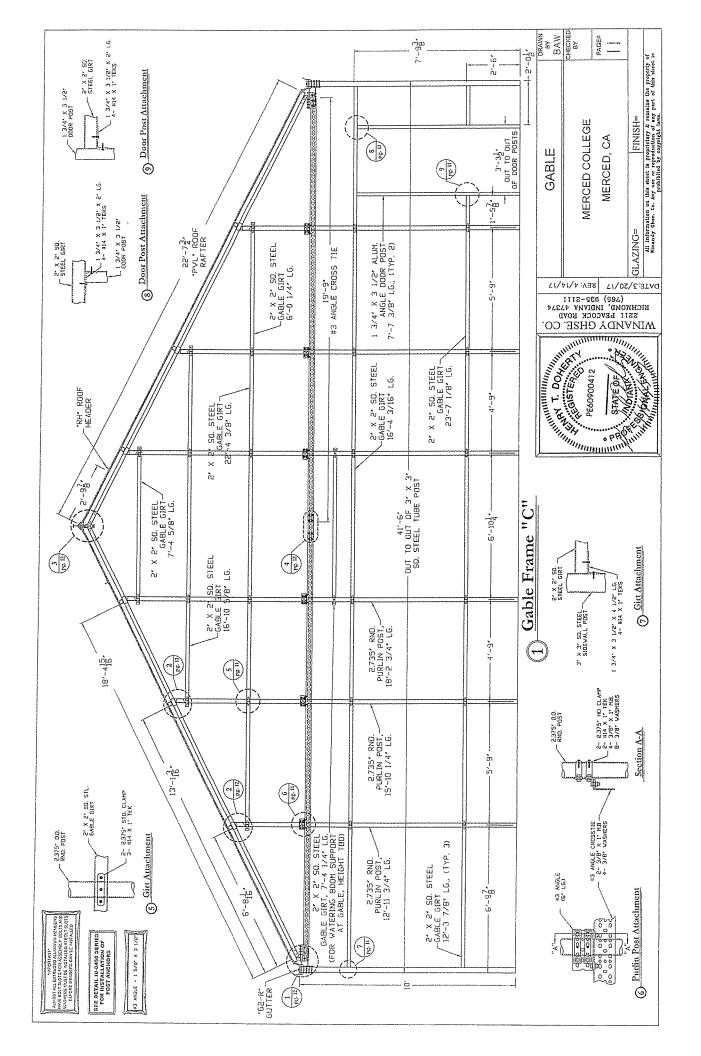


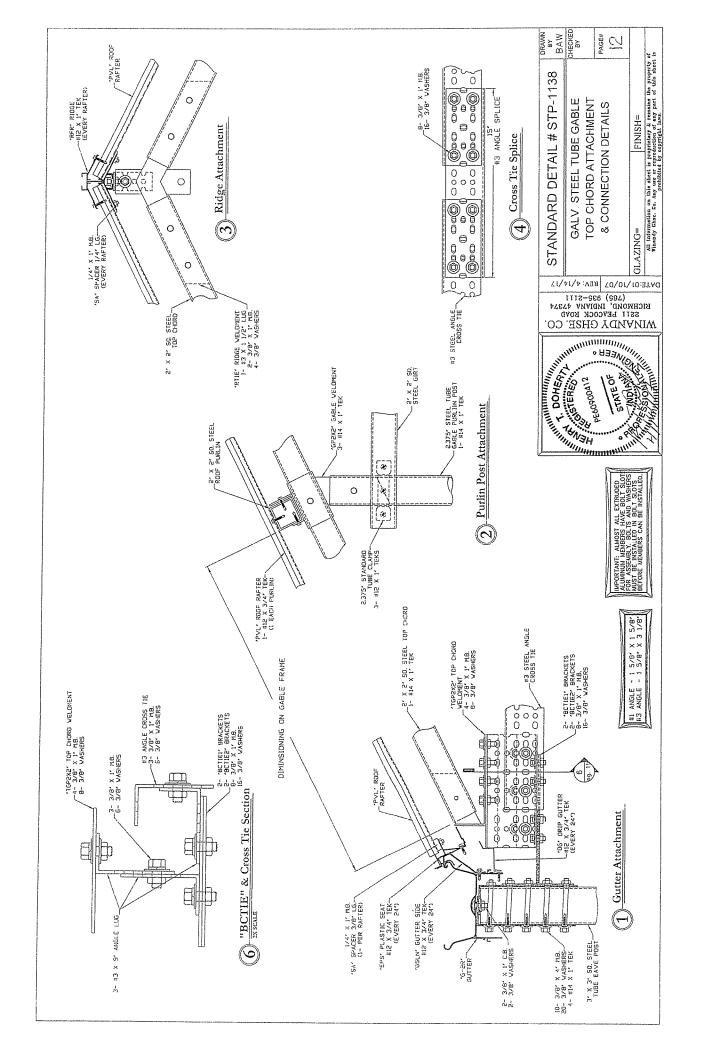


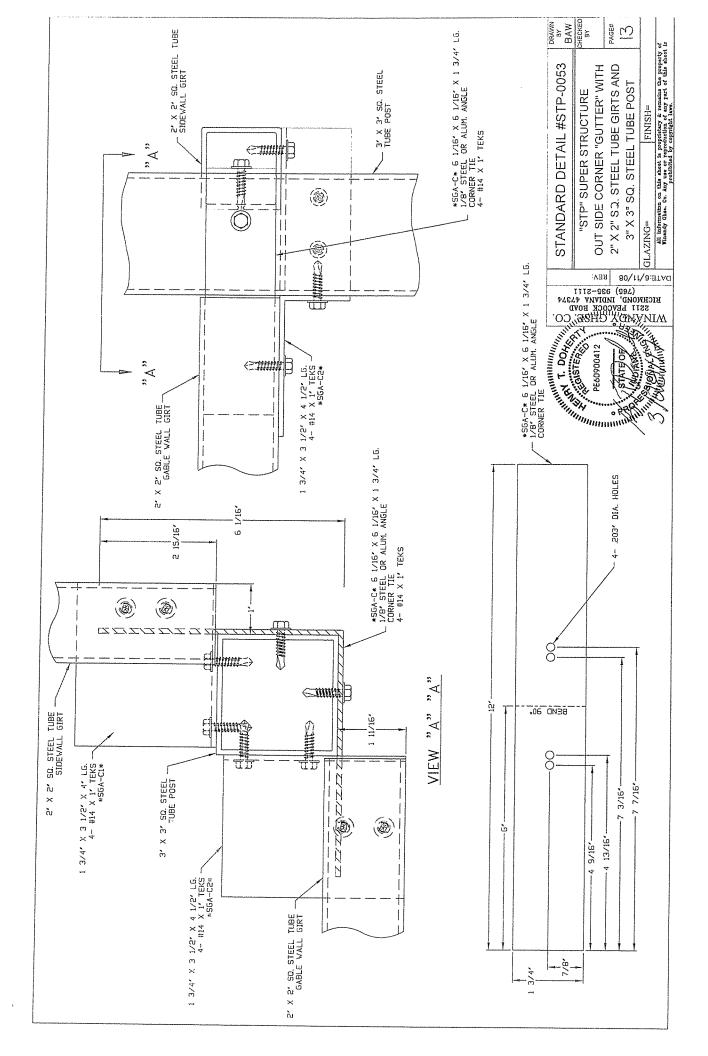


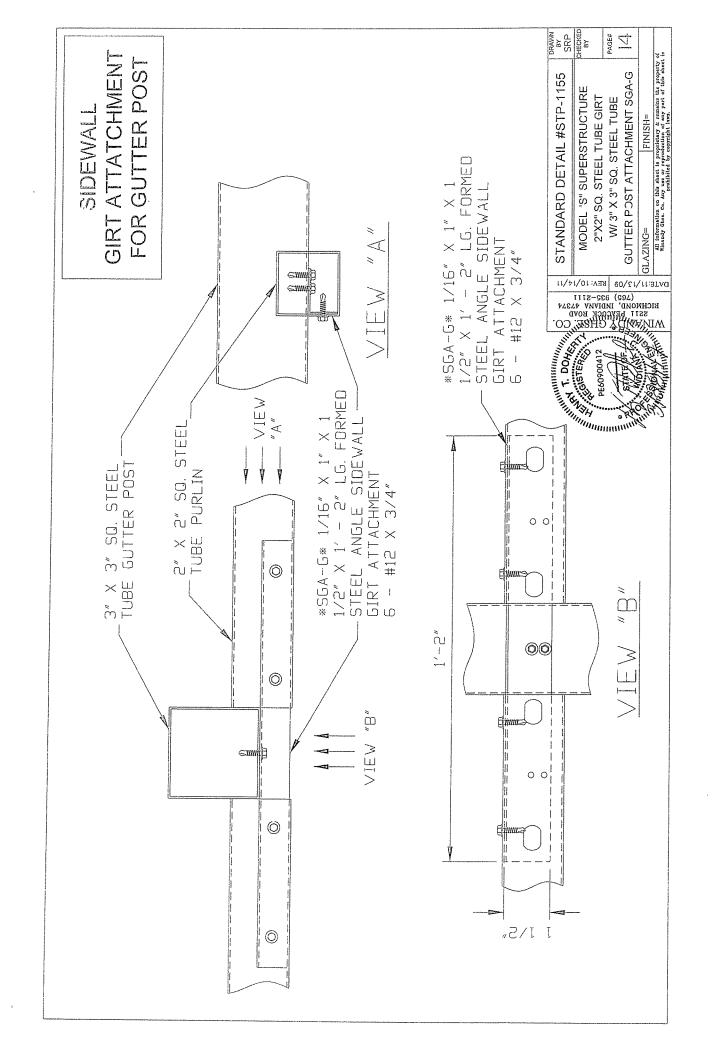


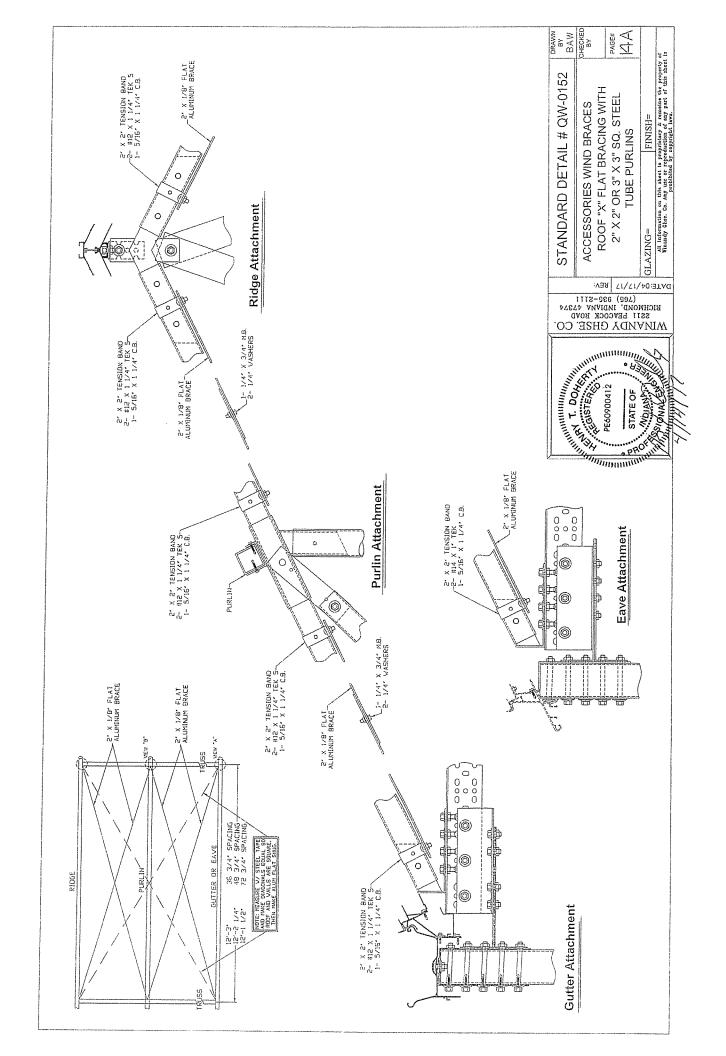

*

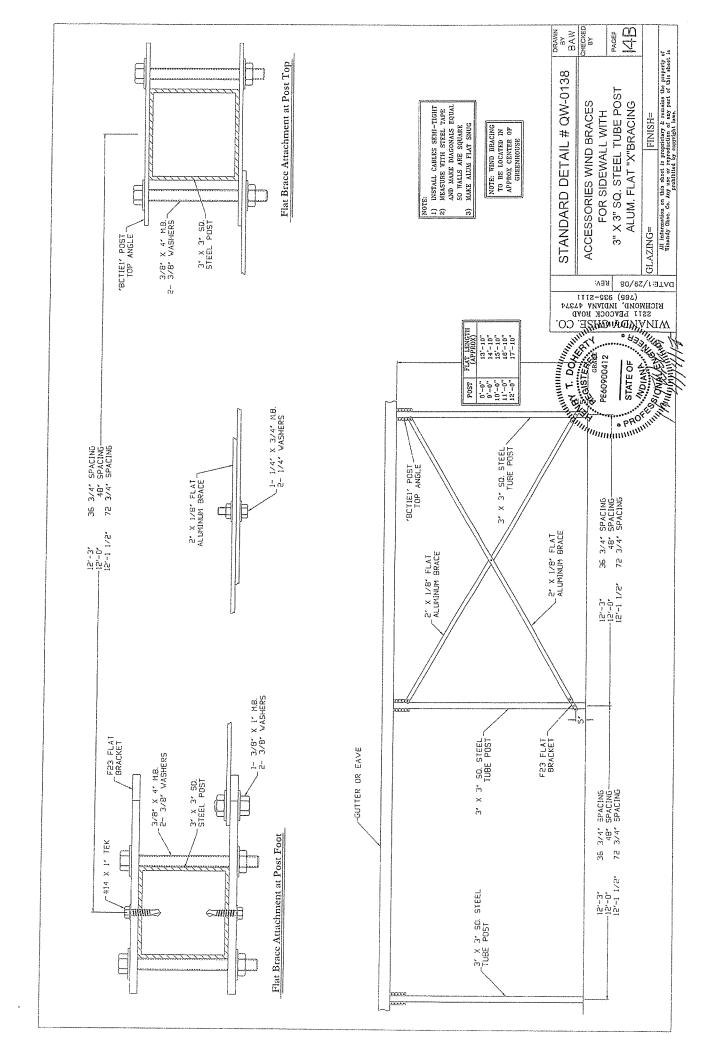


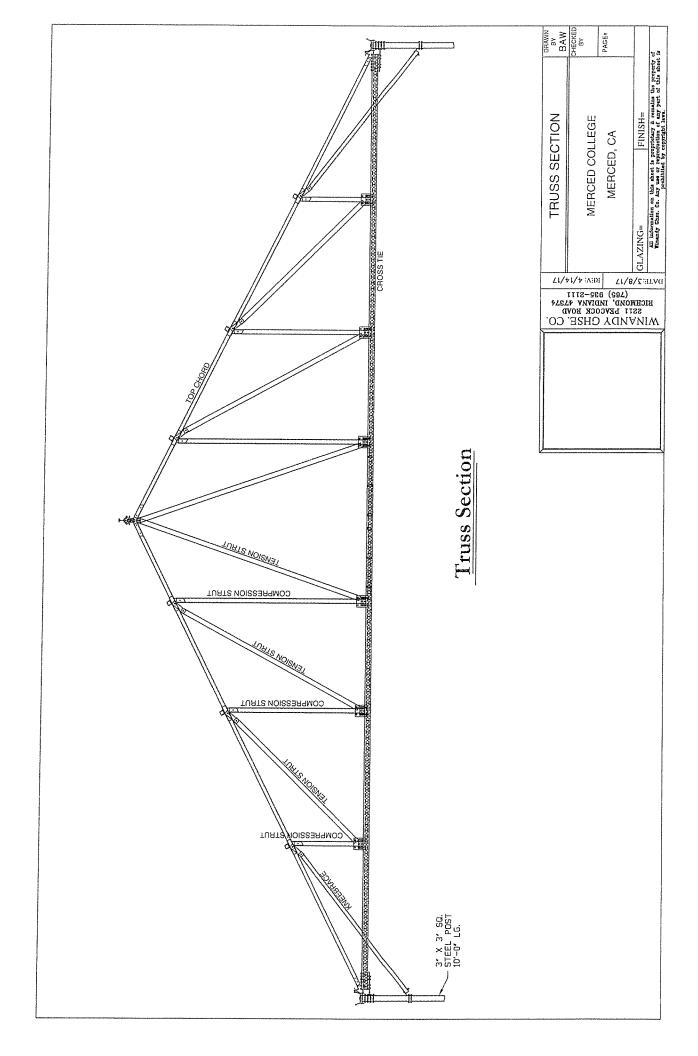


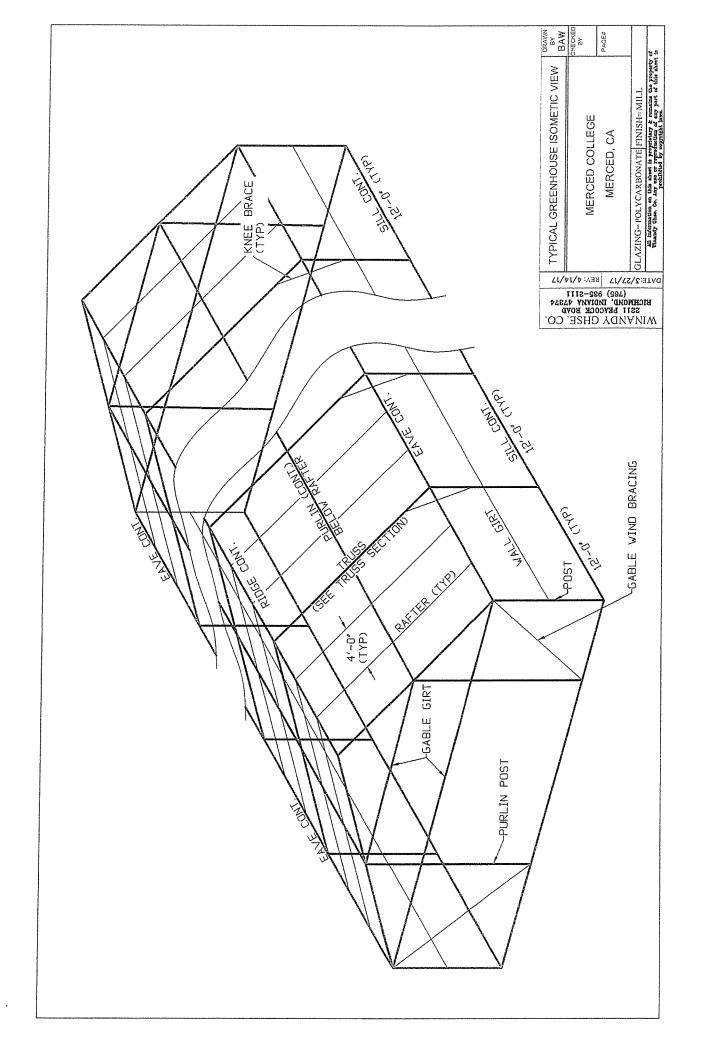












Mercel Loads, PL=6P5F

3/3/

Note 6' + 12 × 6 = 432 # 1

05,5 @5,5 @13,14,16,17

Eloment...
1/2(20.75-11.875) * 12 * 4 = 319.5 * 22,23
Penello. 2

LL= 15P5F 3' + 12 + 15 = 540 + - @ Node 5, 6 6 + 12 + 15 = 1030 + - @ Node 13,14,16,17 1/2(20,75 +11.875)(2X15 = 799 & Node 15

1/2 (20,75-11.875) × 12 + 15 = 799 # 23

3/31/17 Merced WL 90 MPH 105 expB-7.7-PSF 11.7 PSF Sidewall 17441243 = 626 # @ Nod3 17.4 x4 x 2 = 836 # @ 1/2 Elem 1 1.5 +12 x.17.4= 314 # @ Node 1+5 Roof Hoviz

Roof Hovit 3 + 12 + 14! = 144 # - Non- 13,14 + Elem 14 @ 6'2" 1.5+12+4 = 72 # - Note 5/15

Roof Vift $3 \pm 12 \pm 7.7 = 278 \pm 100 \text{ fe 5,15}$ $6 \pm 12 \pm 7.7 = 555 \pm 100 \text{ fe 13,112 km 14.062"}$ $3 \pm 12 \pm 11.7 = 429 \pm 100 \text{ fe 15,6}$ $6 \pm 12 \pm 11.7 = 857 \pm 100 \text{ Node 16,17 Elem 15.062"}$

Merced

 $4/424.195F \neq 11 = 1061 \pm \frac{17.4}{24.105005}$ $1105+2210+530.5 \Rightarrow 20.75+12 \neq 17.4 \neq 16 = 4420 \pm \frac{17.4}{2} = 530.5 @ Bottom

1061 = 530.5 @ Bottom

1061 = 530.5 @ Bottom$

4/420/2 = 2210@ Post Base

1/05 + 2210 +531 = 3846 1/2 = tand 10 X = 40° X Cos 40° = 3846 # = 5021 # Max WB Load

Earthquake Load Merced

Siesnie Shear

Note: No Floor Loads Inglated to the Greenhouse structure & Floor is Slab engrade.

F = 1.2505 x (Wx)

WX=5PSF

Stesnie Use Group 1

505 = 2/3 5ms

5ms = Fa 53

55 = 150%=1.5

Fa = 1

 $F = \frac{1.2(2/3 \times 1 \times 1.5)}{2.5} (5PSF)$

F = 2.5 PSF Load

Smaller than Wh-therefore Windload rules.

2.5 x /2 x 20.5 x = 3/2 #

NOTES :

JOB ID: MERCED

RUN ID: MERCED

PROGRAM : General Frame Analysis v2.05

PAGE NO. 1

TIME : Thu Apr 13 16:00:59 2017 JOB NO. : 1 WINANDY GREENHOUSE CO.

JOB : MERCED RUN : MERCED

RUN : ME	RCED							
		N O D A L	INF	ORMA	====== T I O	N	to seems being seems were week when might them began seems.	
NODE		COORDINATES				CONDITI		
NO	X	Y	CODE	PX ST	IFF	PY STIFF		
	its : Ft	Ft		Lb/I	===== n	Lb/In	Lb-In	 /Deg
1	0.000	0.000	F					
2	41.500		F					
3	0.000	7.000	FR					
4	41.500	7.000	FR					
5	0.000	10.000	FR					
6	41.500	10.000	FR					
7	6.125	10.000	FR					
8	11.875	10.000	FR					
9	16.312	10.000	FR					
10	25.188	10.000	FR					
11	29.625	10.000	FR					
12	35.375	10.000	FR					
13	6.125	13.063	FR					
14	11.875	15.938	FR					
15	20.750	20.375	FR					
16	29.625		FR					
17	35.375		FR					
22	16.313		FR					
23	25.188	18.156	FR					
		========= E	 r inf	0 R M <i>P</i>	T I O	====== N		
${ t ELEM}$	NE	PE E	LEM	BETA	PROP	ELEM	NE	PE
NO	NODE	NODE LEI	NGTH	ANGLE	TYPE	TYPE	HINGE F	HINGE
	=========				:			the plane short their three chirt, and what
		Units : 1	.'t	Deg				
1	1	3	7.000	90.00	1	BEAM		

ELEM NO	NE NODE	PE NODE	ELEM LENGTH	BETA ANGLE	PROP TYPE	ELEM TYPE	NE HINGE	PE HINGE	
		Unit:	s : Ft	Deg					
1 2 3	1 2 3	3 4 5	7.000 7.000 3.000	90.00 90.00 90.00	1 1	BEAM BEAM BEAM			
4 5	4 5	6 7	3.000 6.125	90.00	1 2	BEAM STRUT	Y	Y	
6 7	7 8	8 9	5.750 4.437	0.00	2 2	STRUT STRUT	Y Y	Y Y	
8 9	9 10	10 11	8.876 4.437	0.00 0.00	2 2	STRUT STRUT	Y Y	Y Y	
10 11	11 12	12 6	5.750 6.125	0.00	2	STRUT	Y Y	Y Y	
12 13 14	5 13 14	13 14 22	6.848 6.429 4.961	26.57 26.57 26.55	4 4 4	BEAM BEAM BEAM			

PROGRAM : General Frame Analysis v2.05

PAGE NO. 2

WINANDY GREENHOUSE CO. TIME: Thu Apr 13 16:01:04 2017

JOB : MERCED RUN : MERCED

JOB NO. : 1

=======================================	===:	===:	===	===	===	===	===	==	===	===	===	===	===	==	==		 ====	===	: == == :	====	= =
	777 7	r 13	7.7	T 3	т т		רג ד		_	-	7. /	70	_	т	\sim	3.7					

ELEM NO	NE NODE	ELEMI PE NODE	ENTIN ELEM LENGTH	FORMA BETA ANGLE	T I O PROP TYPE	N ELEM TYPE	NE HINGE	PE HINGE
15	23	16	4.960	-26.56	4	BEAM		
16	16	17	6.429		4	BEAM		
17	17	6	6.848	-26.57		BEAM		
18	3	13	8.618	44.71	4	BEAM	Y	Y
19	17	4	8.618	-44.71	4	BEAM	Y	Y
20	7	13	3.063	90.00	3	BEAM		
21	8	14	5.938	90.00	3	BEAM		
22	11	16	5.938	90.00	3	BEAM		
23	12	17	3.063	90.00	3	BEAM		
24	7	14	8.266	45.92	5	TRUSS	Y	Y
25	8	22	9.285	61.45	5	TRUSS	Y	Y
26	9	15	11.284	66.84	5	TRUSS	Y	Y
27	10	15	11.284	113.16	5	TRUSS	Y	Y
28	11	23	9.285	118.55	5	TRUSS	Y	Y
29	12	16	8.266	134.08	5	TRUSS	Y	Y
30	22	9	8.156	-90.01	3	BEAM		
31	23	10	8.156	-90.00	3	BEAM		
32	22	15	4.961	26.57	4	BEAM	•	
33	23	15	4.962	153.43	4	BEAM		

	Ъ	R	O	Р	E	R	Т	Y	Ι	Ν	\mathbf{F}	0	R	Μ	Α	${ m T}$	Ι	0	Ν	
--	---	---	---	---	---	---	---	---	---	---	--------------	---	---	---	---	----------	---	---	---	--

PROP NO	SECTION NAME		MODULUS	AREA	I	DIST
		Units :	Lb/In 2	In2	In4	Ft
2 3 4	2.375RND		2.9e+007 2.9e+007 2.9e+007 2.9e+007 2.9e+007	1.1 0.328 0.681 0.825 0.25	1.55 1.02 0.443 0.493 0.163	

		NODAL	LOAD :	INFORM	ATION	
REC	LOAD	LOAD	PX	PY	M	
NO	CASE	TYPE	DX	DY	BETA	
======			:			

Units: Lb Lb Ft-Lb Ft Deg

PROGRAM : General Frame Analysis v2.05

PAGE NO. 3

WINANDY GREENHOUSE CO. TIME : Thu Apr 13 16:01:04 2017 JOB NO. : 1

JOB : MERCED RUN : MERCED

Proce tomas served drived desired desired and		NODAI	T. O A D	INFORM A		
REC 1				PY DY	M BETA	
					DGIA	
Descript Node Lis 1	st :		0.00	-216.00	0.00	
Descript Node Lis 2	st :	: DL : 13,14,16,17 FORCE		-432.00	0.00	
Descript Node Lis 3	st :		0.00	-639.00	0.00	
Descript Node Lis 4	st :		0.00	-540.00	0.00	
Descript Node Lis 5	it :	LL 13,14,16,17 FORCE		-1080.00	0.00	
Descript Node Lis 6	t :		0.00	-799.00	0.00	
Descript Node Lis 7	t :		626.00	0.00	0.00	
Descript Node Lis 8	t :	1,5	314.00	0.00	0.00	
Descript: Node List 9	t:		72.00	278.00	0.00	
Descript: Node List 10	t:		144.00	555.00	0.00	
Descript: Node List 11	:		0.00	429.00	0.00	

PROGRAM : General Frame Analysis v2.05

PAGE NO. 4

TIME: Thu Apr 13 16:01:04 2017 WINANDY GREENHOUSE CO. JOB NO. : 1

JOB : MERCED RUN : MERCED

RUN:	MERCED					
REC NO	LOAD CASE	N O D A L LOAD TYPE		N F O R M A PY DY	ATION M BETA	
	ption:	16,17	0.00	857.00	0.00	
	ption : ist :	1,2	312.00	0.00	0.00	
	ption : ist : 1	22,23	0.00	-319.50	0.00	
	ption : ist : 2		0.00	-799.00	0.00	
	otion : ist :					

16 3 FORCE 144.00 555.00 0.00

PROGRAM : General Frame Analysis v2.05

PAGE NO. 5

WINANDY GREENHOUSE CO. TIME : Thu Apr 13 16:01:04 2017 JOB : MERCED JOB NO. : 1

JOB : ME RUN : ME					JOB NO. : 1
NODE	LOAD	NODAL	D I S P L A C E M	ENTS	=======================================
NO 	COMB	DX	DY	ROTATION	
	* Man 2014 1914 1914 - 1914 - 1914 1914 1914 191	Units : In	In	Deg	
LOAD COM	BINATIONS:	:			
COMB 1	: 1.00 X + 1.00 X				
	: 1.00 X + 0.50 X + 1.00 X	CASE 2			
	: 1.00 X + 1.00 X				
COMB 4	: 1.00 X + 1.00 X				
1	1 2 3 4	0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000	
2	1 2 3 4	0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000	
3	1 2 3 4	-0.3362 0.7781 0.8938 -0.1047	-0.0147 -0.0035 0.0016 -0.0045	0.0000 0.0000 0.0000 0.0000	
4	1 2 3 4	0.3362 0.8834 0.7677 0.1047	-0.0147 -0.0031 0.0020 -0.0045	0.0000 0.0000 0.0000 0.0000	
5	1 2 3	-0.1550 0.8236 0.8766	-0.0184 -0.0045 0.0018	0.0000 0.0000 0.0000	

3 X3 Square

$$F_{e'} = \frac{12(3.141)^2}{29,000,000}$$

= 416 779

2X259 Topchord

$$f_a = 7579 \# /.83 \% = 9/31 P5I$$

$$f_b = 4/9 \# 12 \%.50 = 10056pt M = 37.73).$$

$$f_5 = 1/32 /.83 = 147. P5I$$

$$F_{a} = 21,066 \quad p_{5}I \qquad F_{o}' = \frac{12(3.14)^{2}(29000000)}{23(69.7)^{2}}$$

$$F_{b} = {}_{6}(150) = 33,000 p_{5}I \qquad = 30739 p_{5}I$$

$$+ 13 f_{5} + WL + DL$$

$$\frac{9/31}{33,000} + \frac{10056}{33,000} + 0 = 1$$

$$\frac{9/31}{21,060} + \frac{75(10056)}{(1 - \frac{9/31}{30739})(33,000)} = .78$$

Sect Oll

Cross Tie

Fa = 6784/,328"=20683

Fa=.6(50,000)= 30000

20683 < 1 Sect ok

Tension Strut.

,125 £(2,5-,5625) = 242"=

fa = 2313/,242 = 9553 PSI

Fa= 25000 X.66 = 16500PSI

9538 16500 = 1 Sect OK 2.3755trut

$$f_{A} = 2128^{\#}/_{681}^{12} = 3125pst = 9(94) = \frac{12}{8}$$

$$f_{b} = 45^{14}/_{373} = 1448pst = 93$$

 $F_{e'} = \frac{12(\pi^2)k9000000}{23(93)^2}$ $F_{e'} = 17266$

FA = 16.29 KSI = 16290 PSI

Fb=.66 (50) = 33000 PSI

$$\frac{3125}{33000} + \frac{14148}{33000} \leq 1$$

$$\frac{-3125}{16290} + \frac{8(1448)}{(1-\frac{3125}{17266})33000} < 1$$

Seet On For Lovel

X Brase

USE Flat 2'&x 18 @ 16500 \ 242 = 3993 \ max Lond

Now Applied = 5021 \ USE 14 "double Plate"/ 3/2 Bs/f

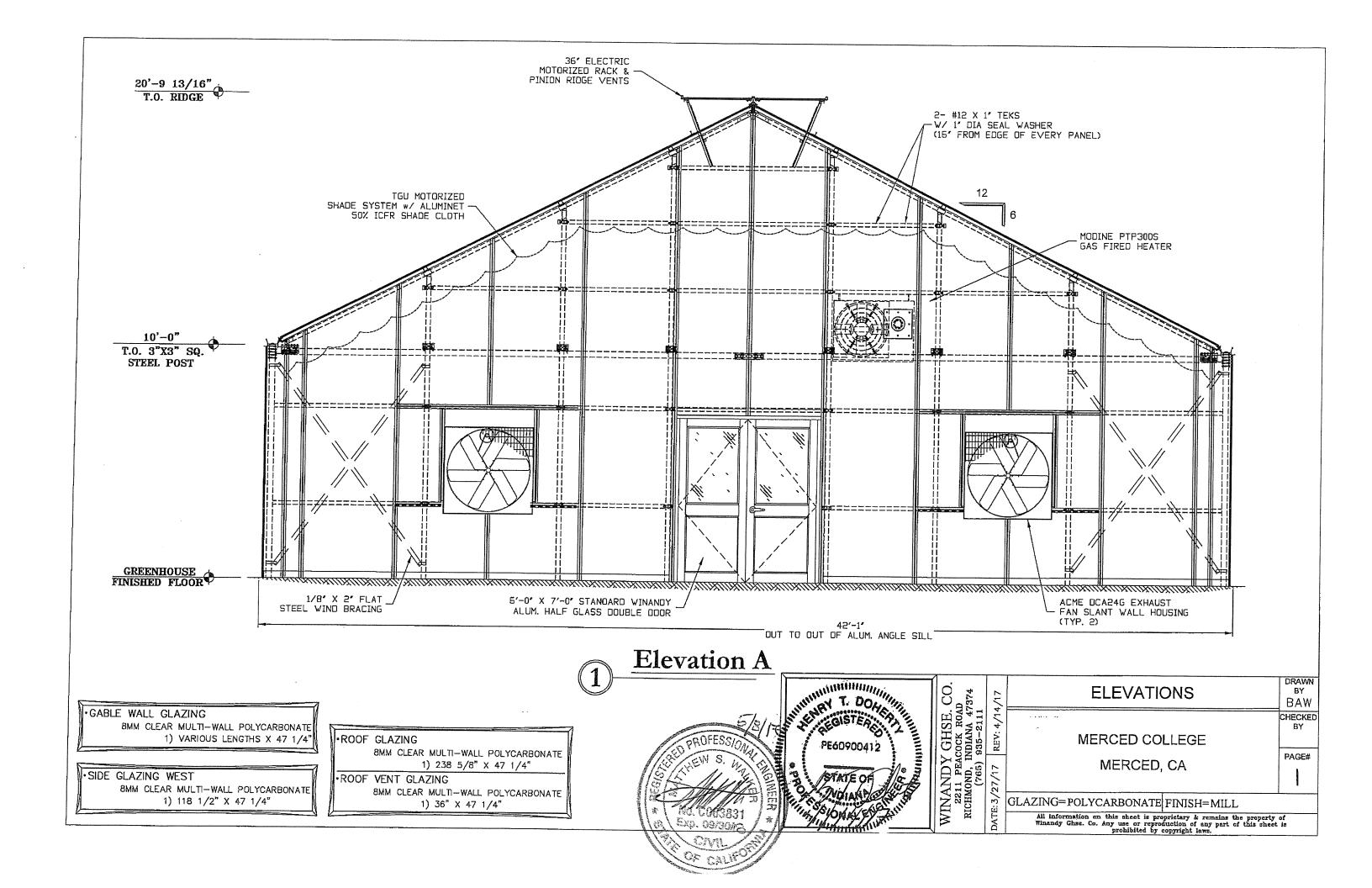
3/3 bol+ = 2310 \ \ 25 \times (1\frac{1}{2} -,625) \times 16500 = 3610 \ \ USE 3 W, nd Bace 5ef 5

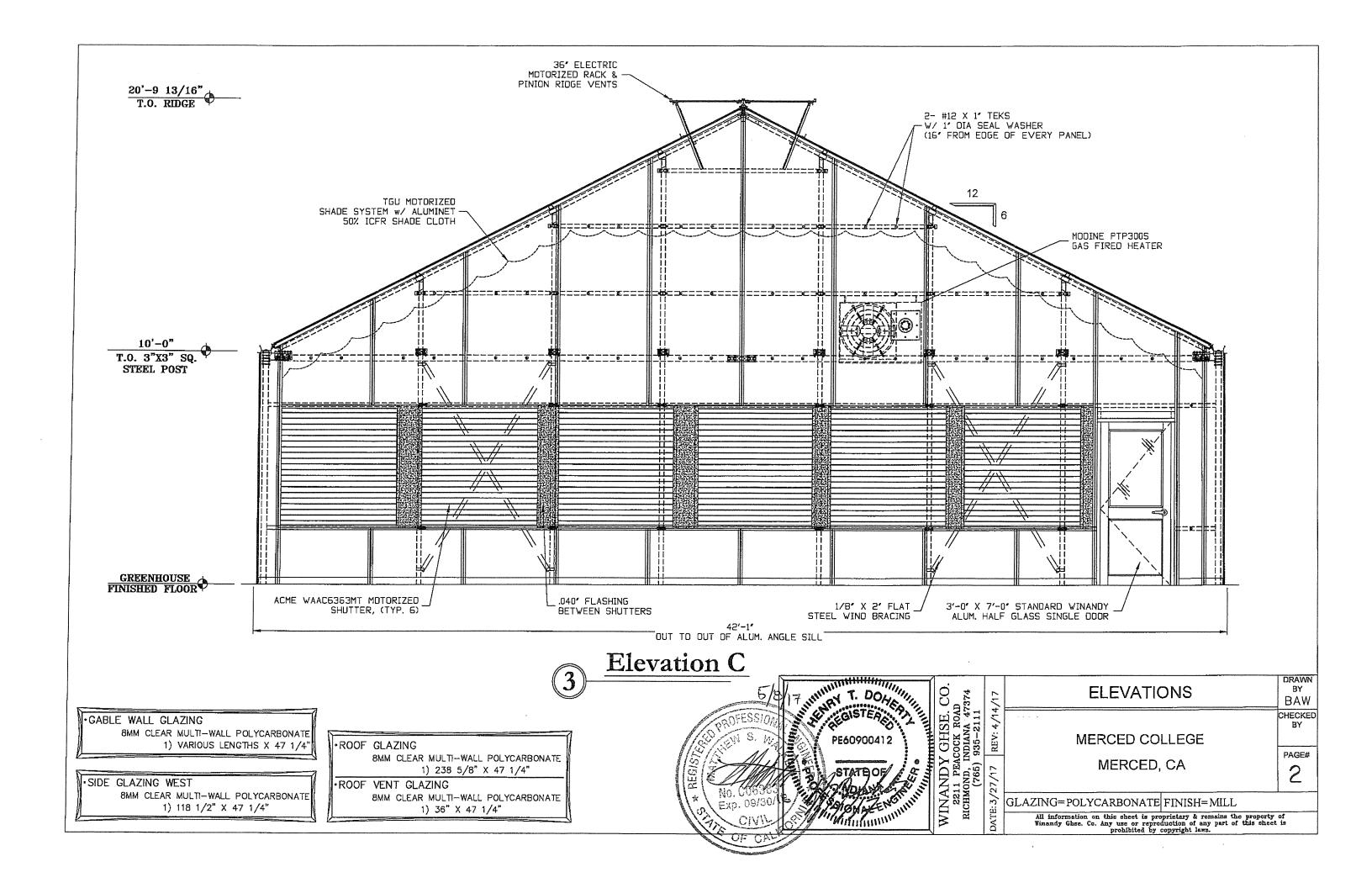
Gable Post

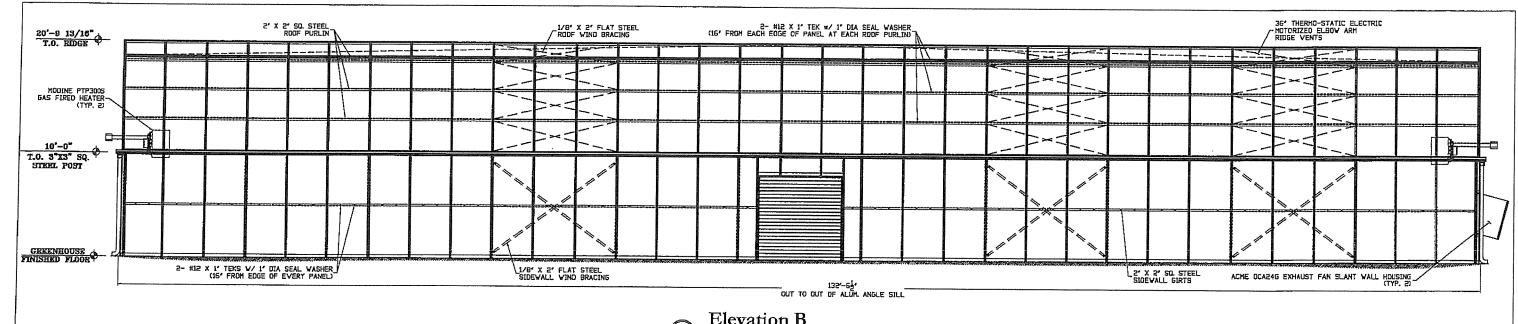
fa=1206#,681"= 1771PSI

Md:

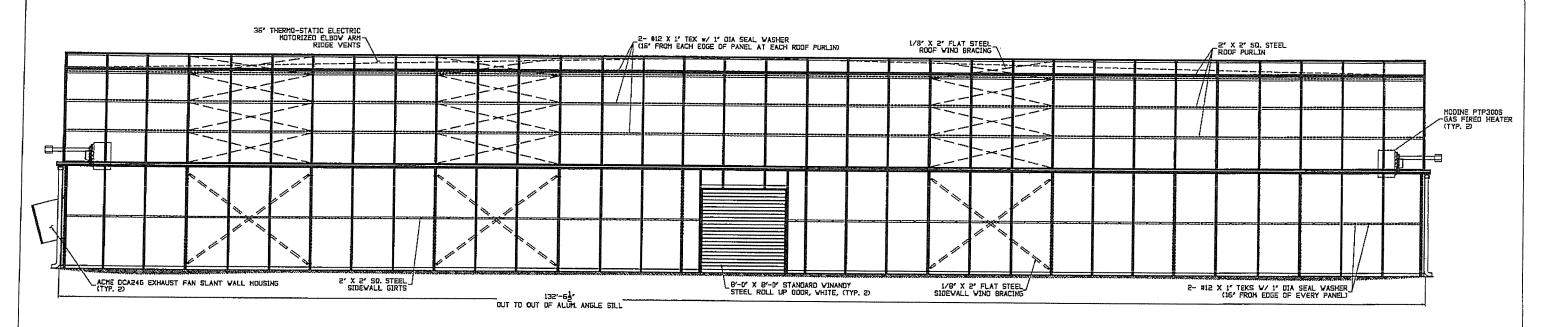
Fa = 6.420 HSI

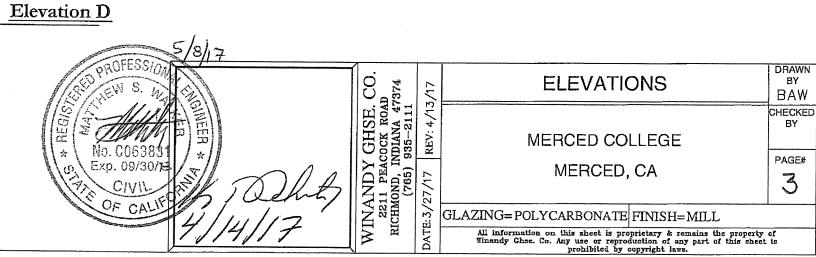

(1)(a16) =187


1771 PST / 1 SectOK


X Basel

Use 1/8 X2/2@ 16500 +, 242 = 3992 #max Applied load = 5021 use double 1/4 Plate at Busew/36 both May shear = 2310 # 1/4" x (1.5-.625) × 16500 = 3610 # Were 3 sets Wind Baces 1/2" BoHs are 1/257# Single Sheare
3514 # double 5heare
36 BoHs are 2310# Single Sheare
4620# double Sheare


All Connections france More than Sufficient Buts 682 Allphal Loads



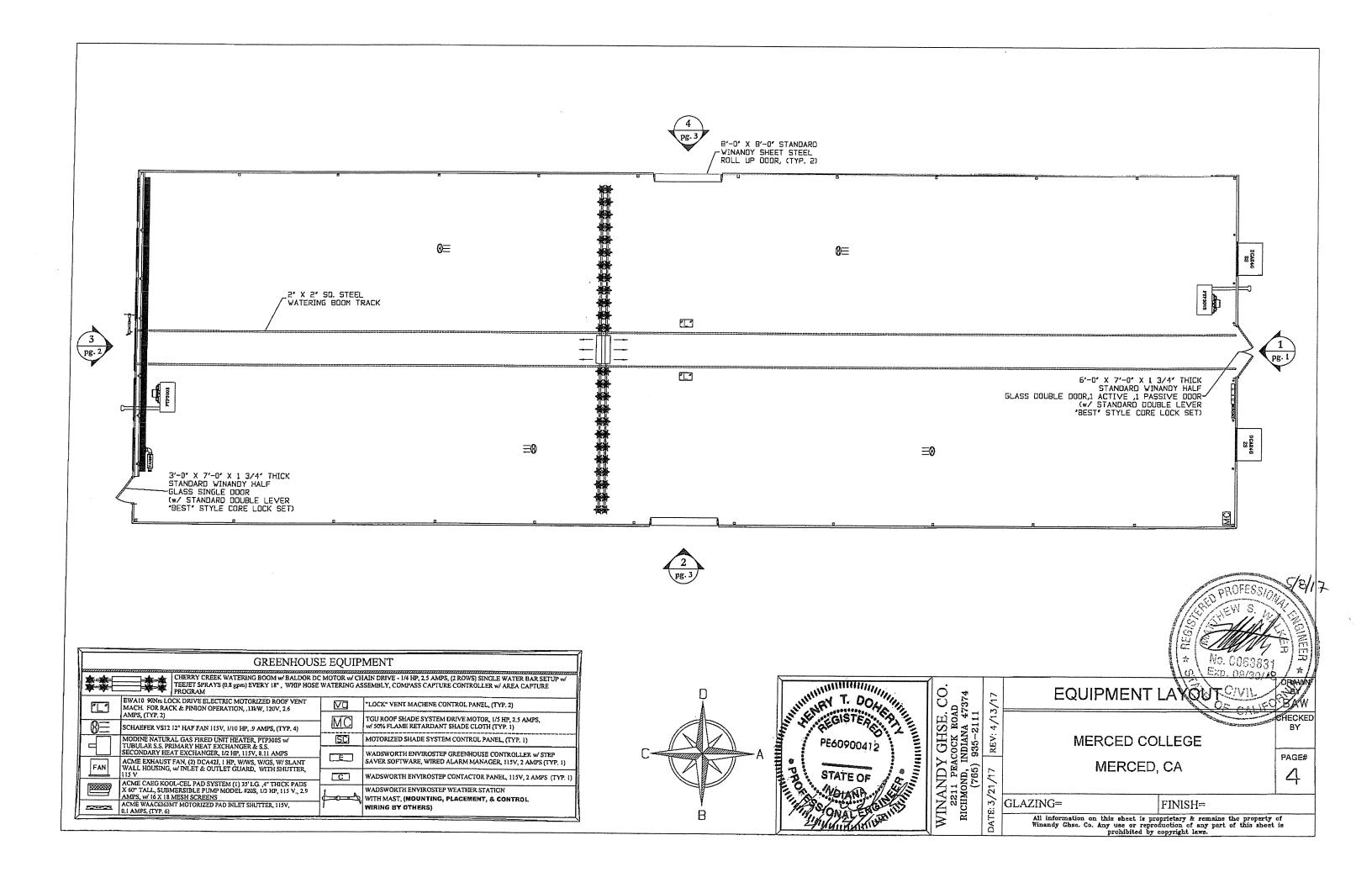
(2) Elevation B

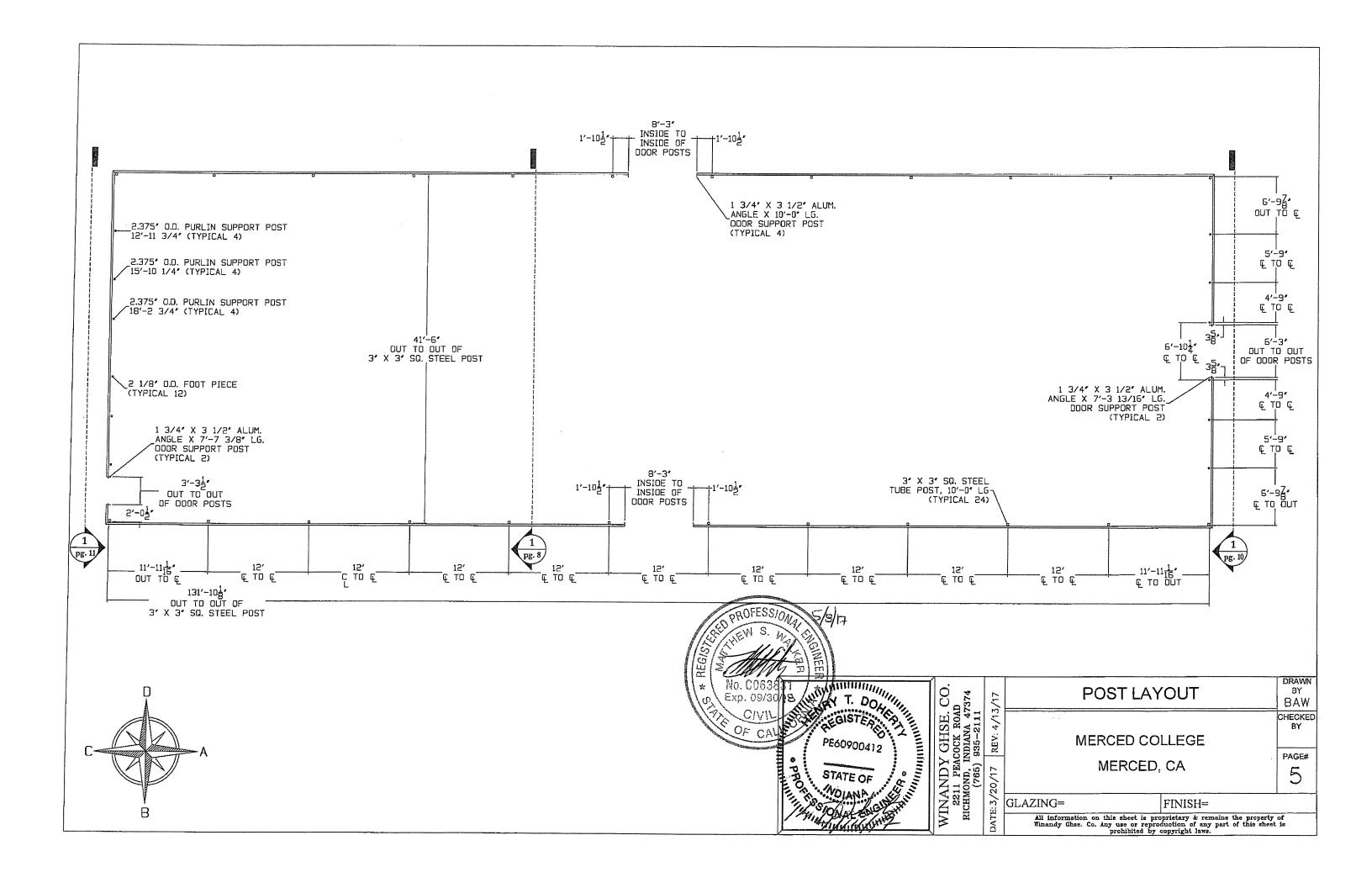
-GABLE WALL GLAZING 8MM CLEAR MULTI—WALL POLYCARBONATE 1) VARIOUS LENGTHS X 47 1/4"

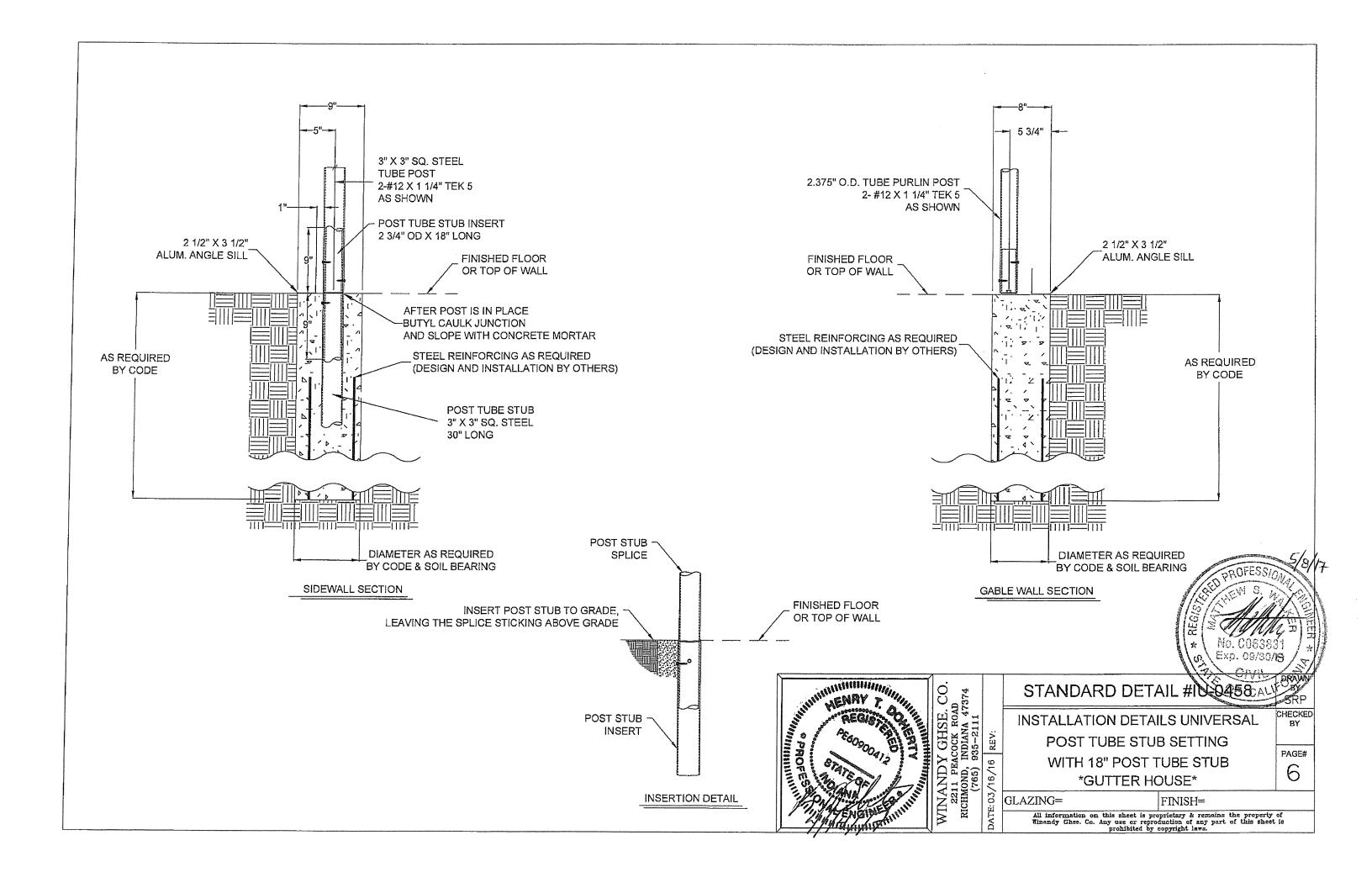
•SIDE GLAZING WEST

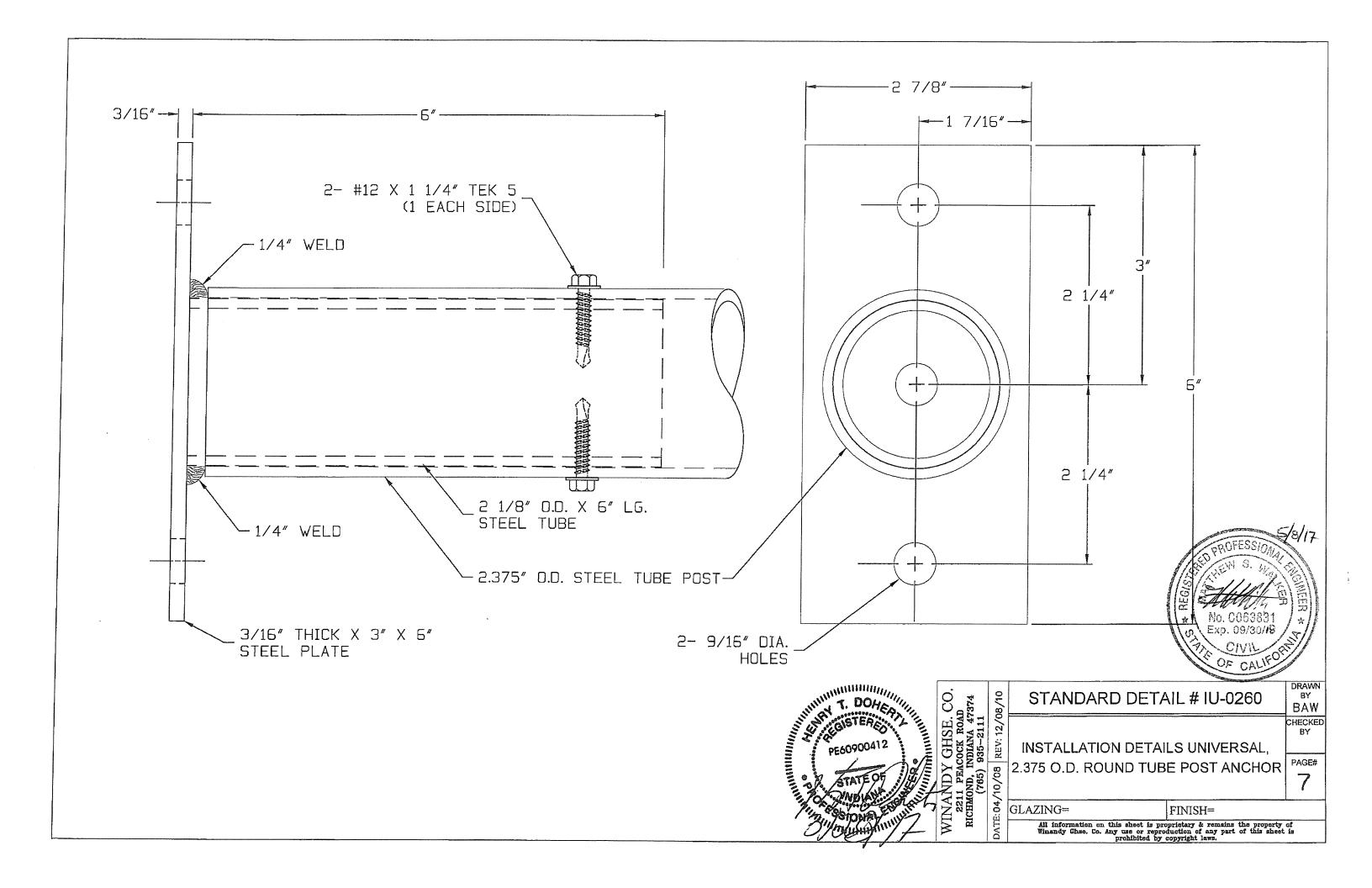
8MM CLEAR MULTI-WALL POLYCARBONATE
1) 118 1/2" X 47 1/4"

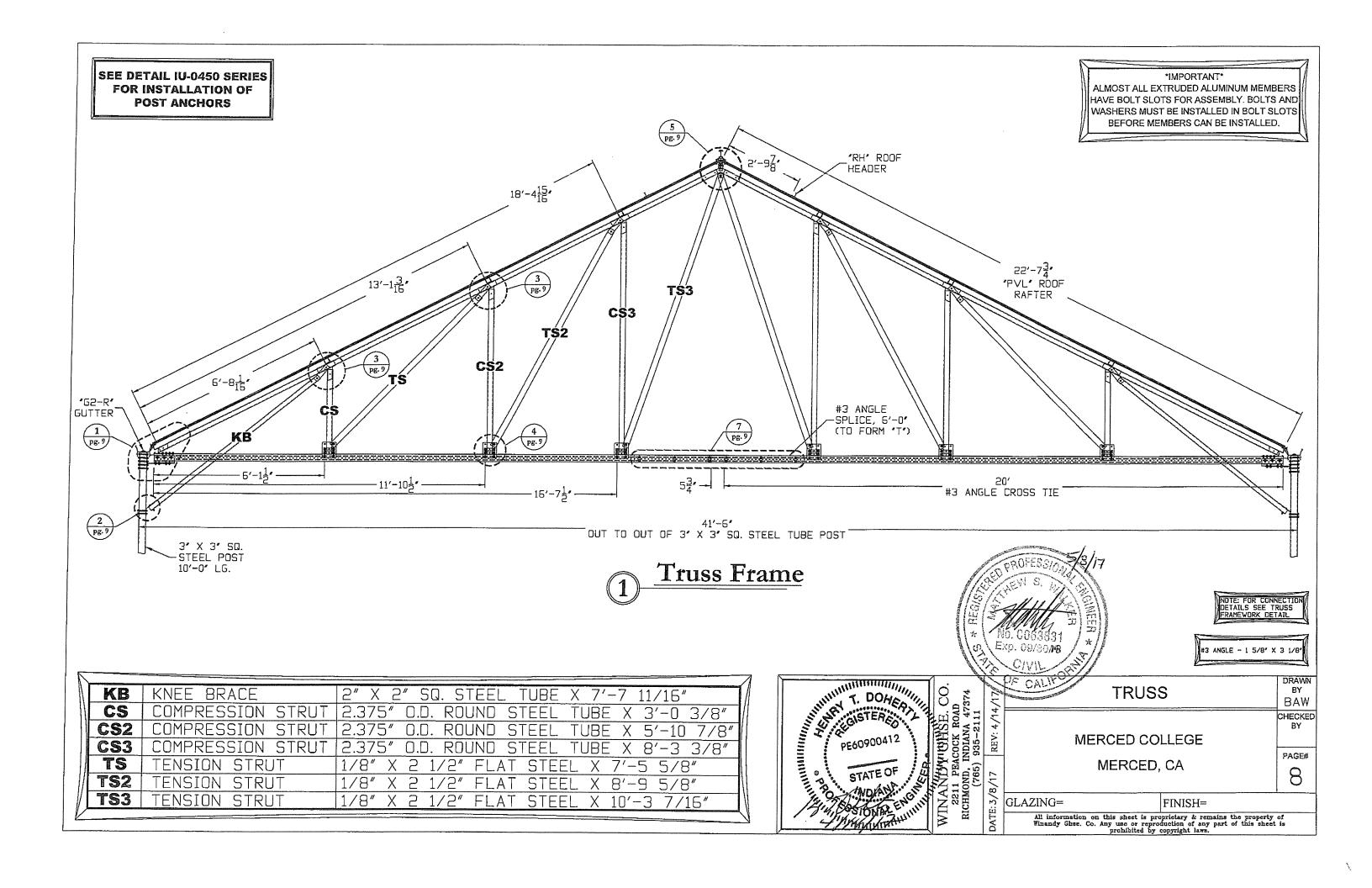
•ROOF GLAZING

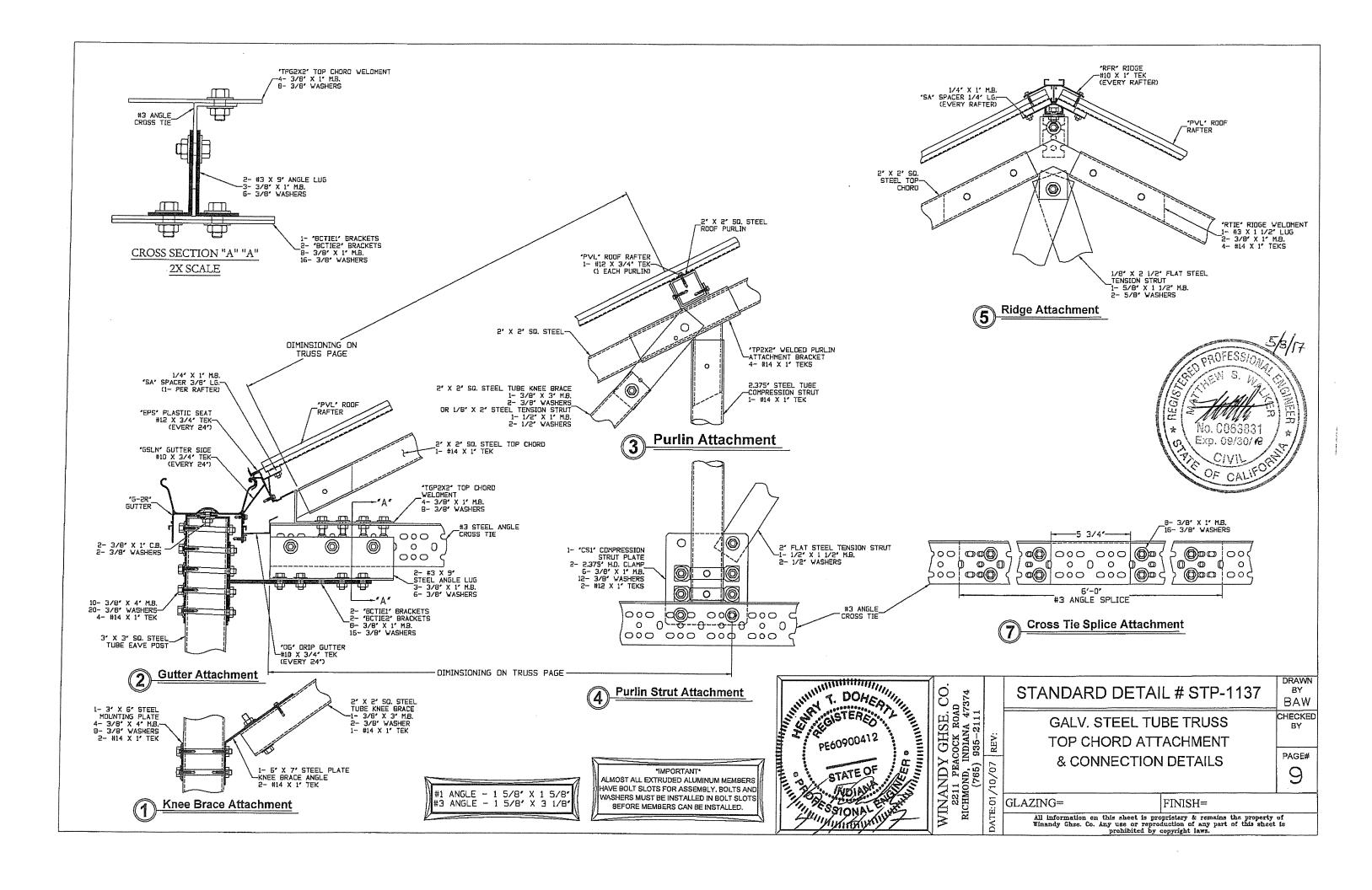

8MM CLEAR MULTI—WALL POLYCARBONATE

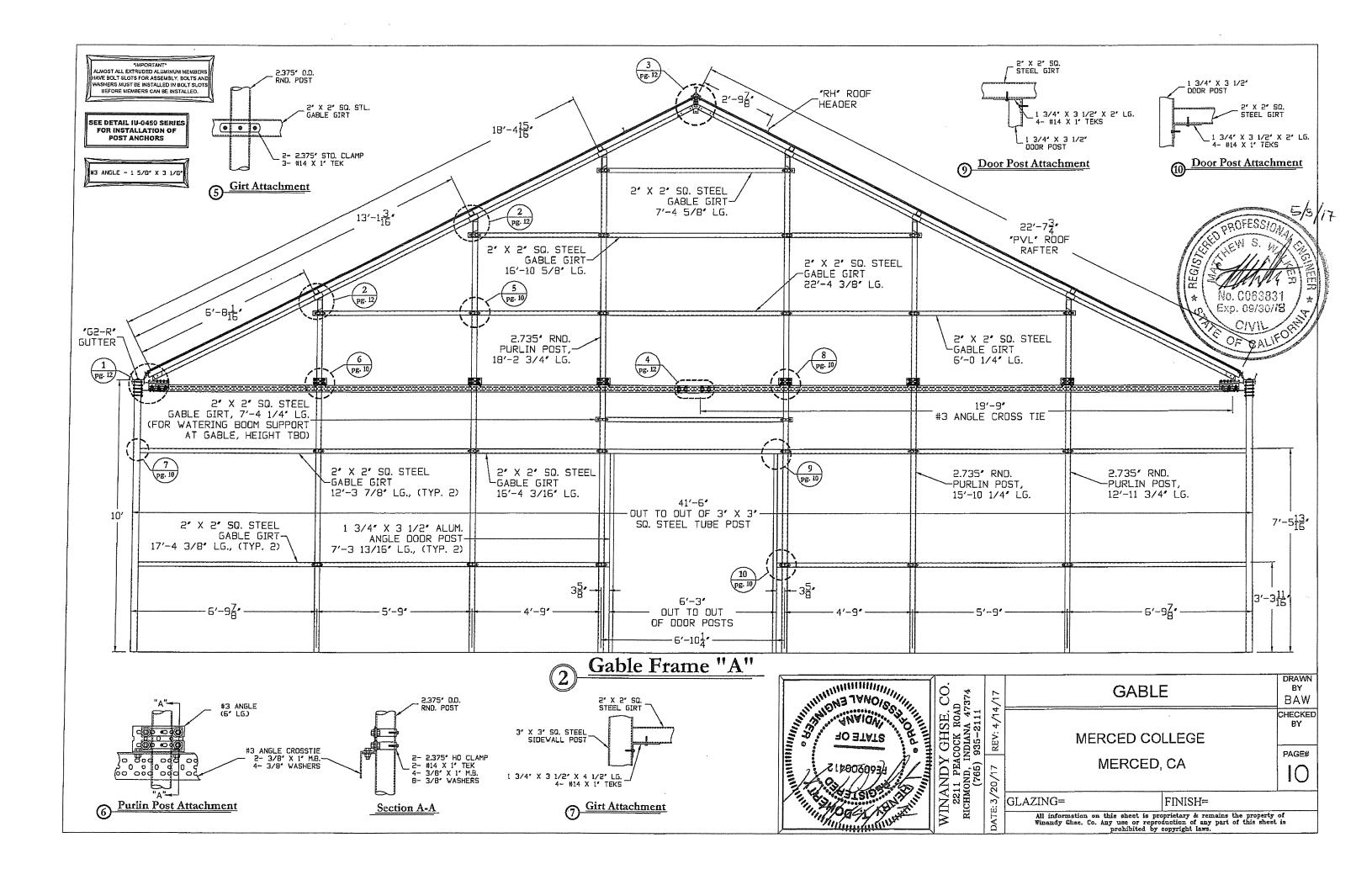

1) 238 5/8" X 47 1/4"

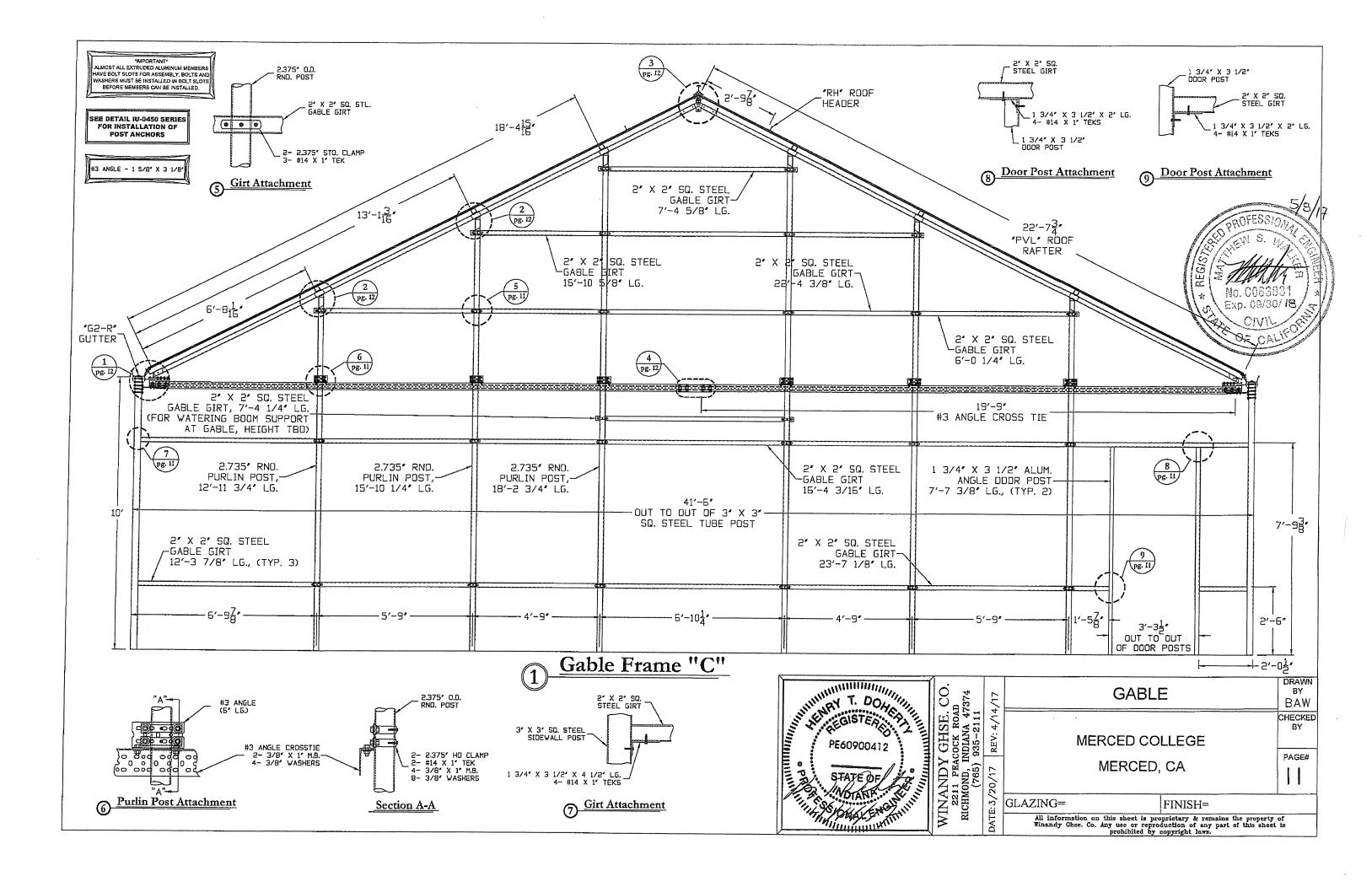

•ROOF VENT GLAZING

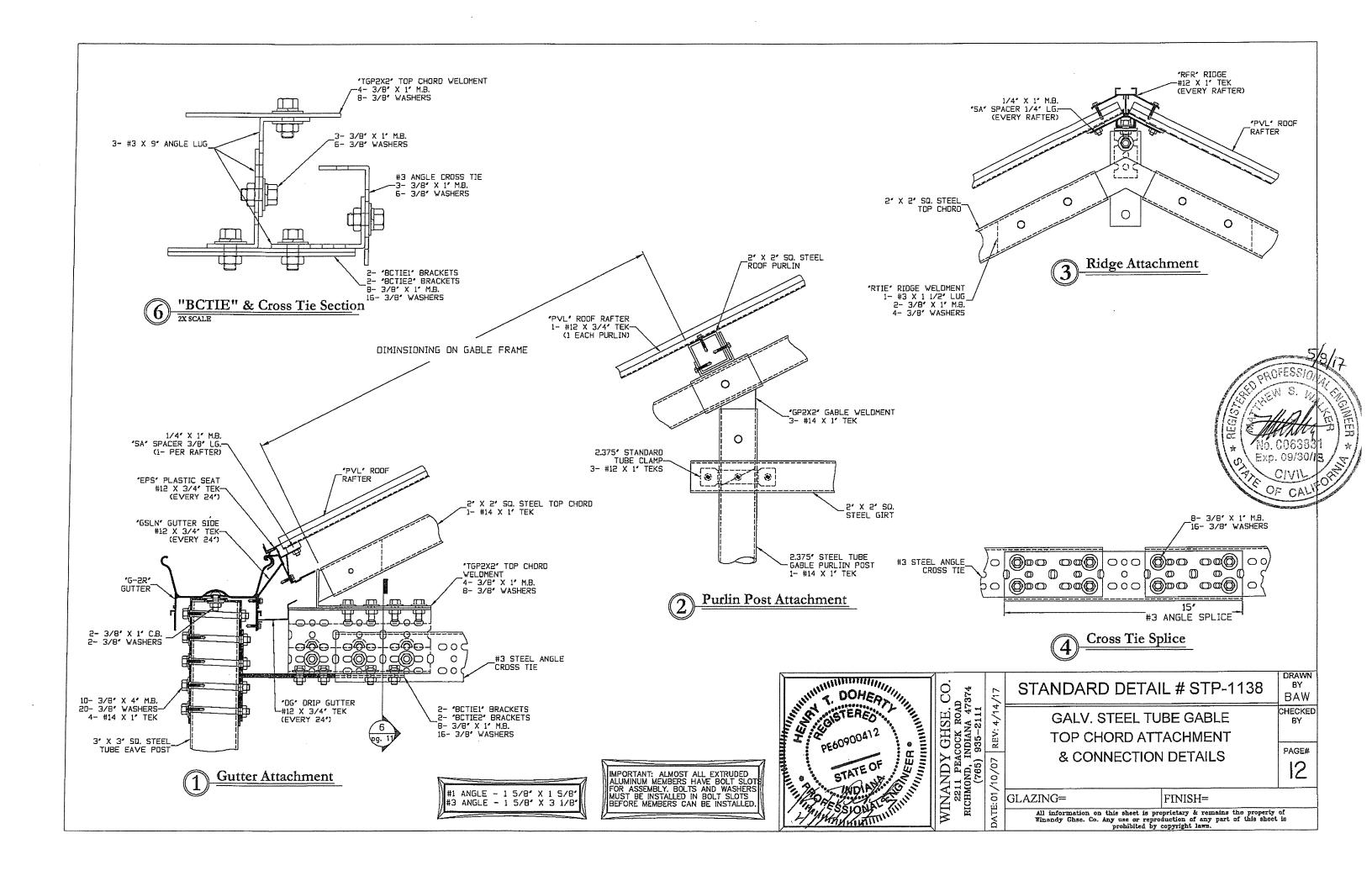

8MM CLEAR MULTI—WALL POLYCARBONATE

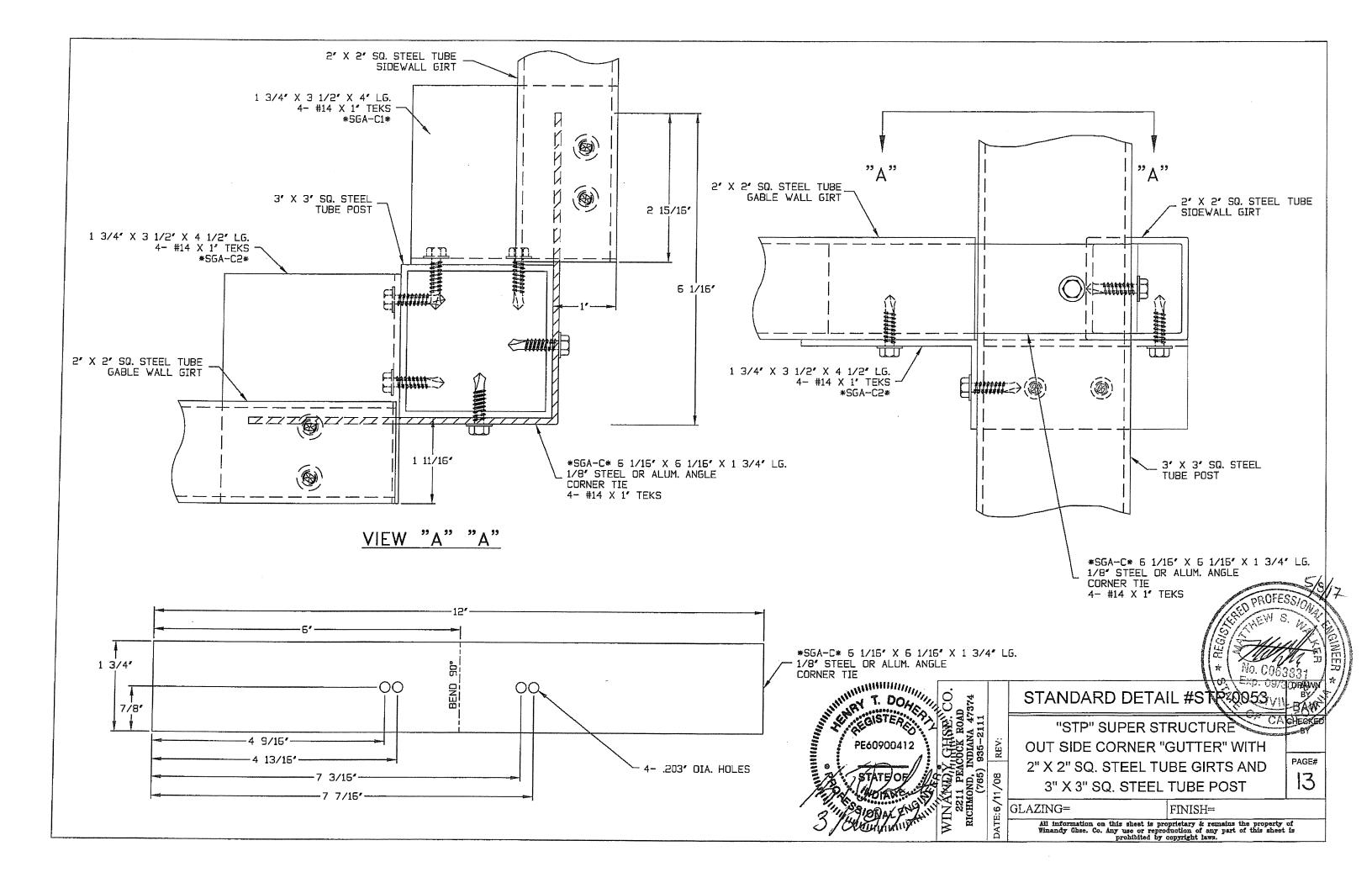

1) 36" X 47 1/4"

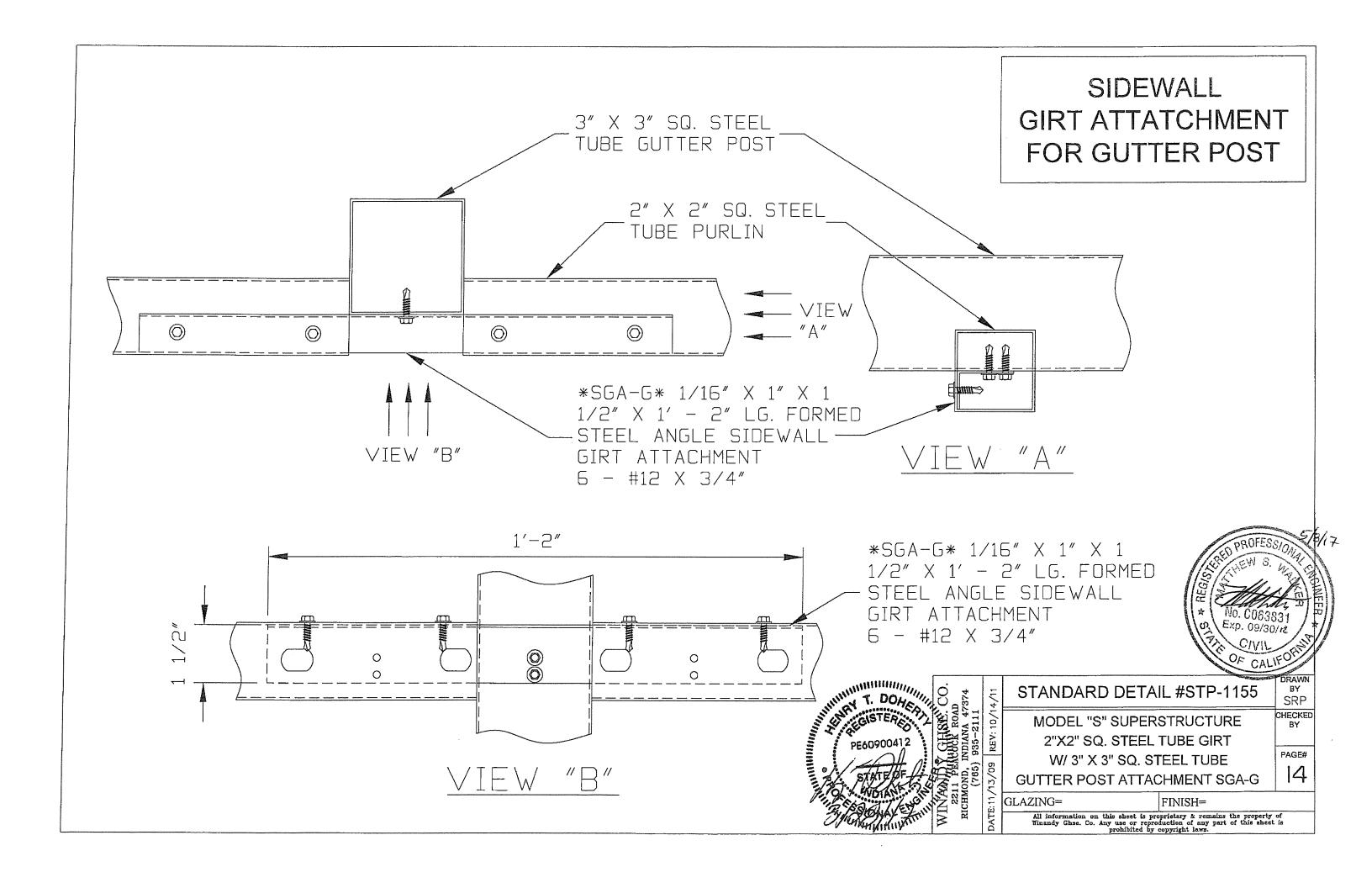


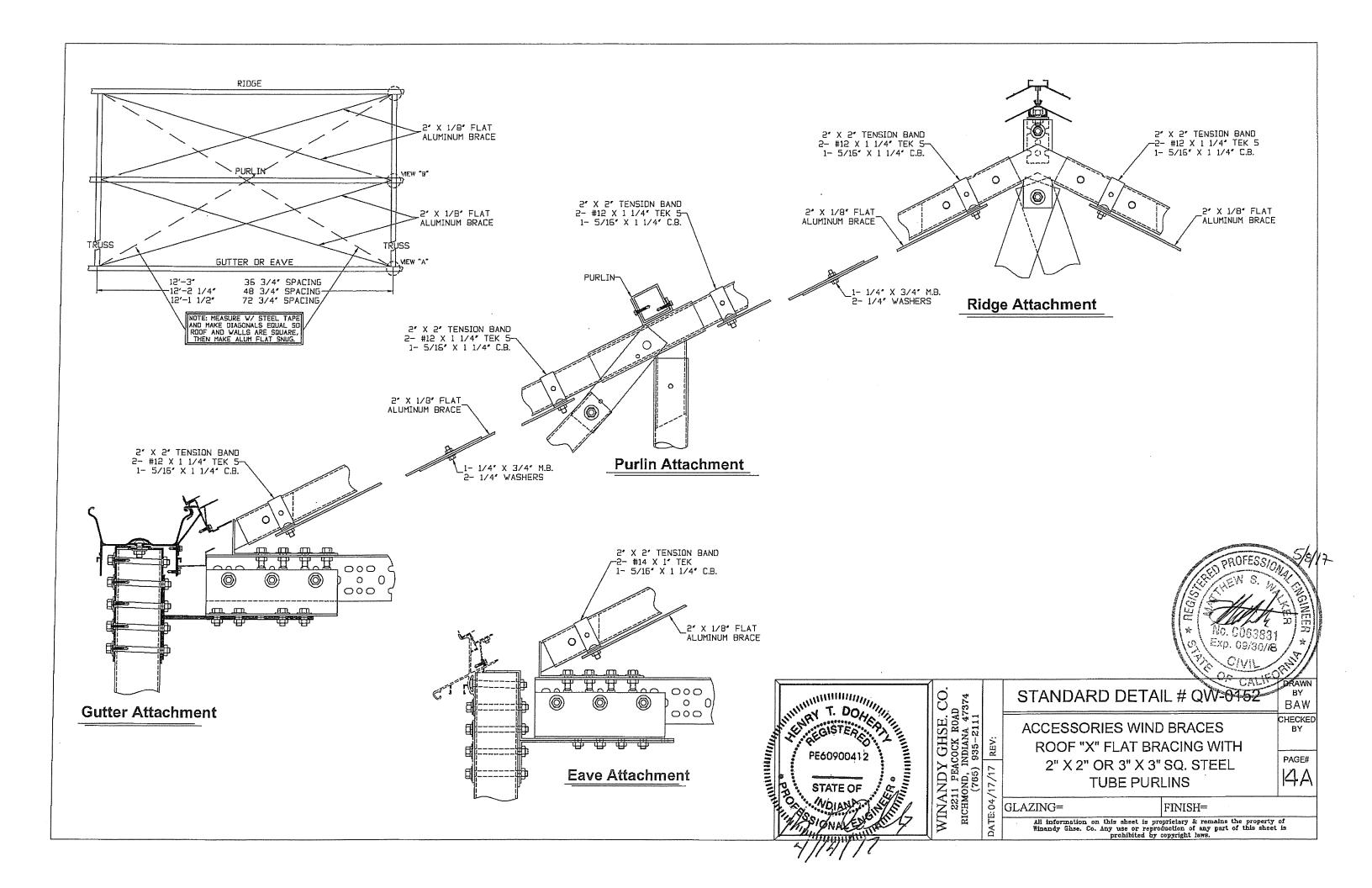


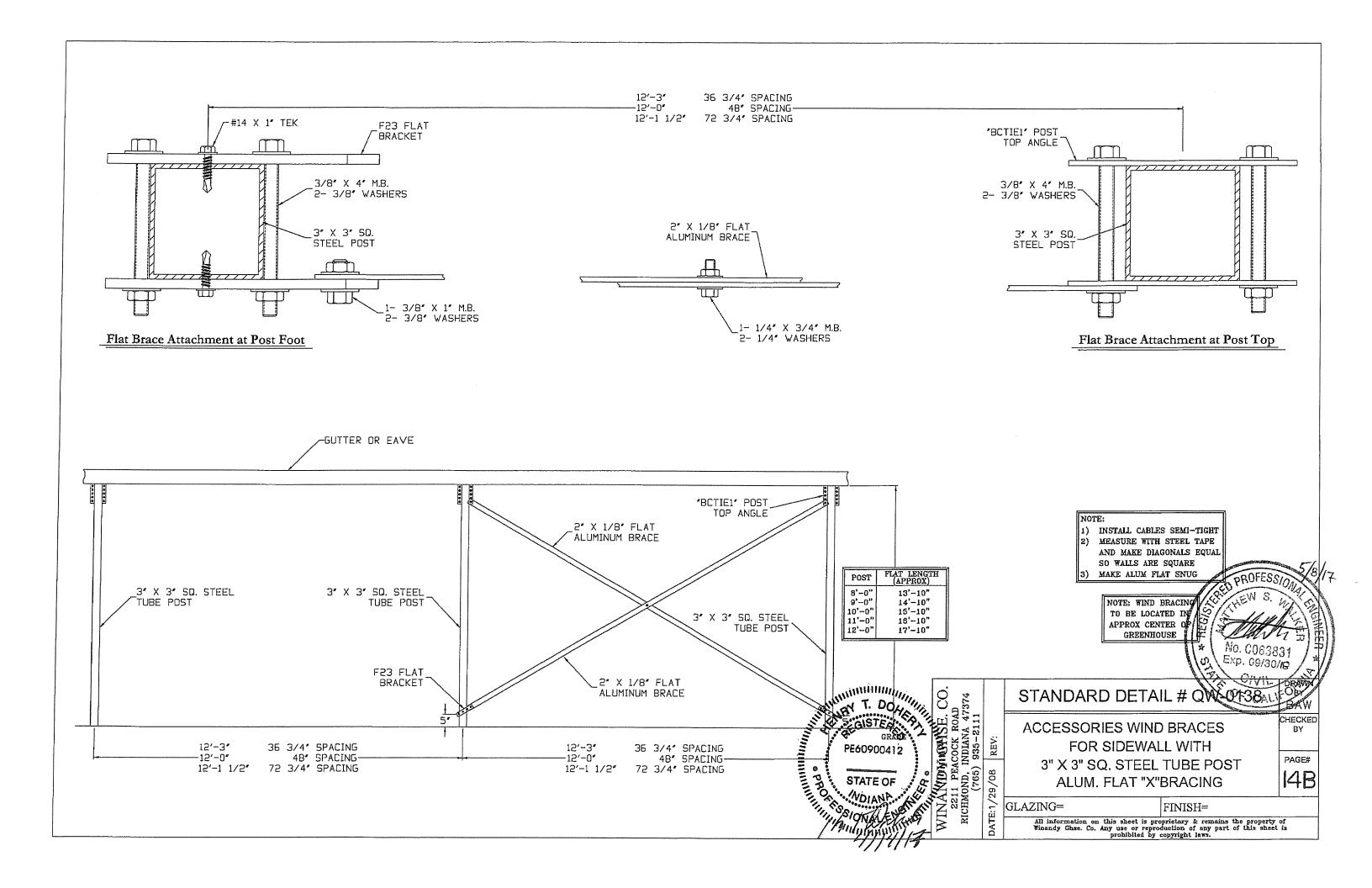


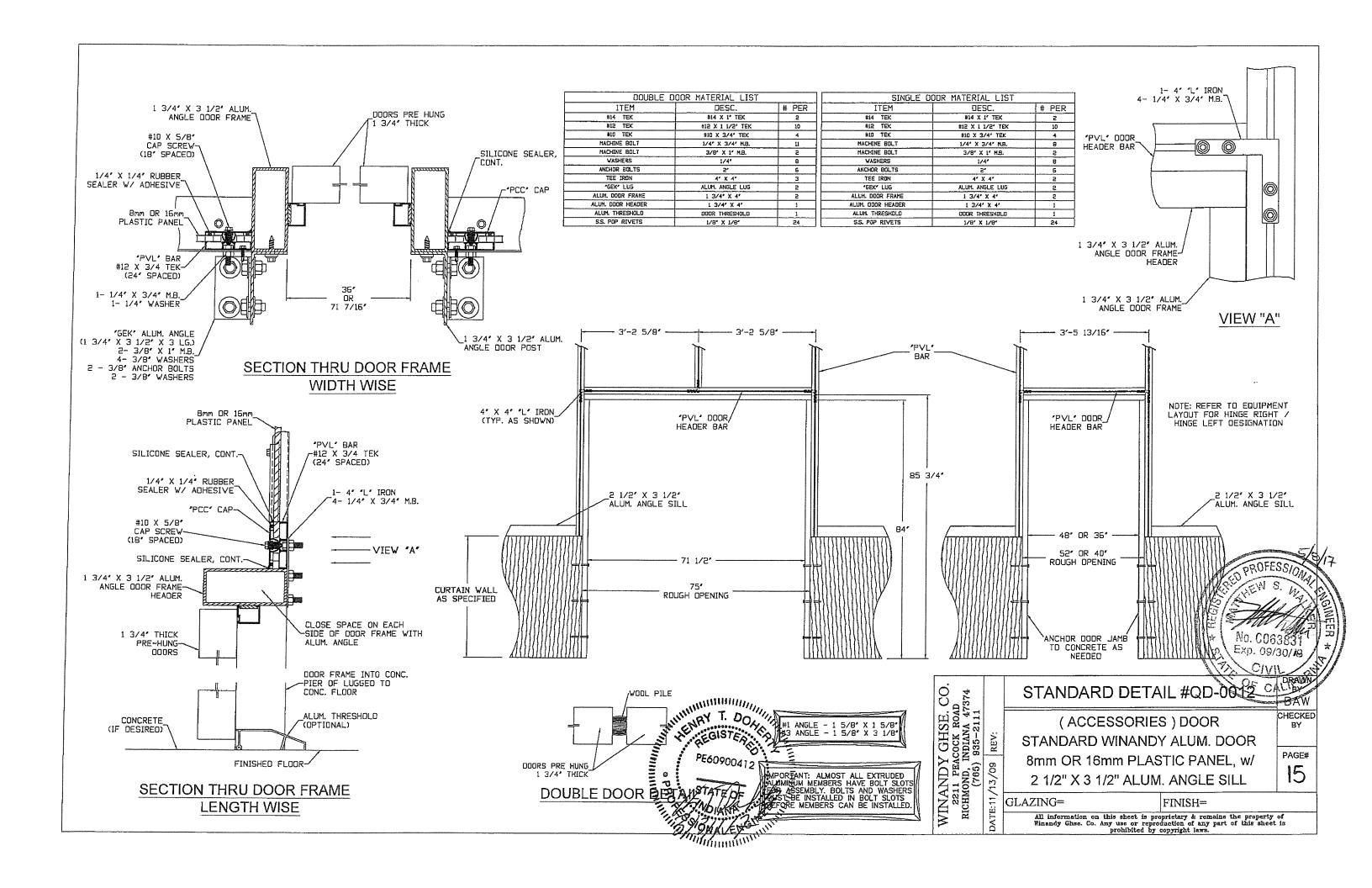


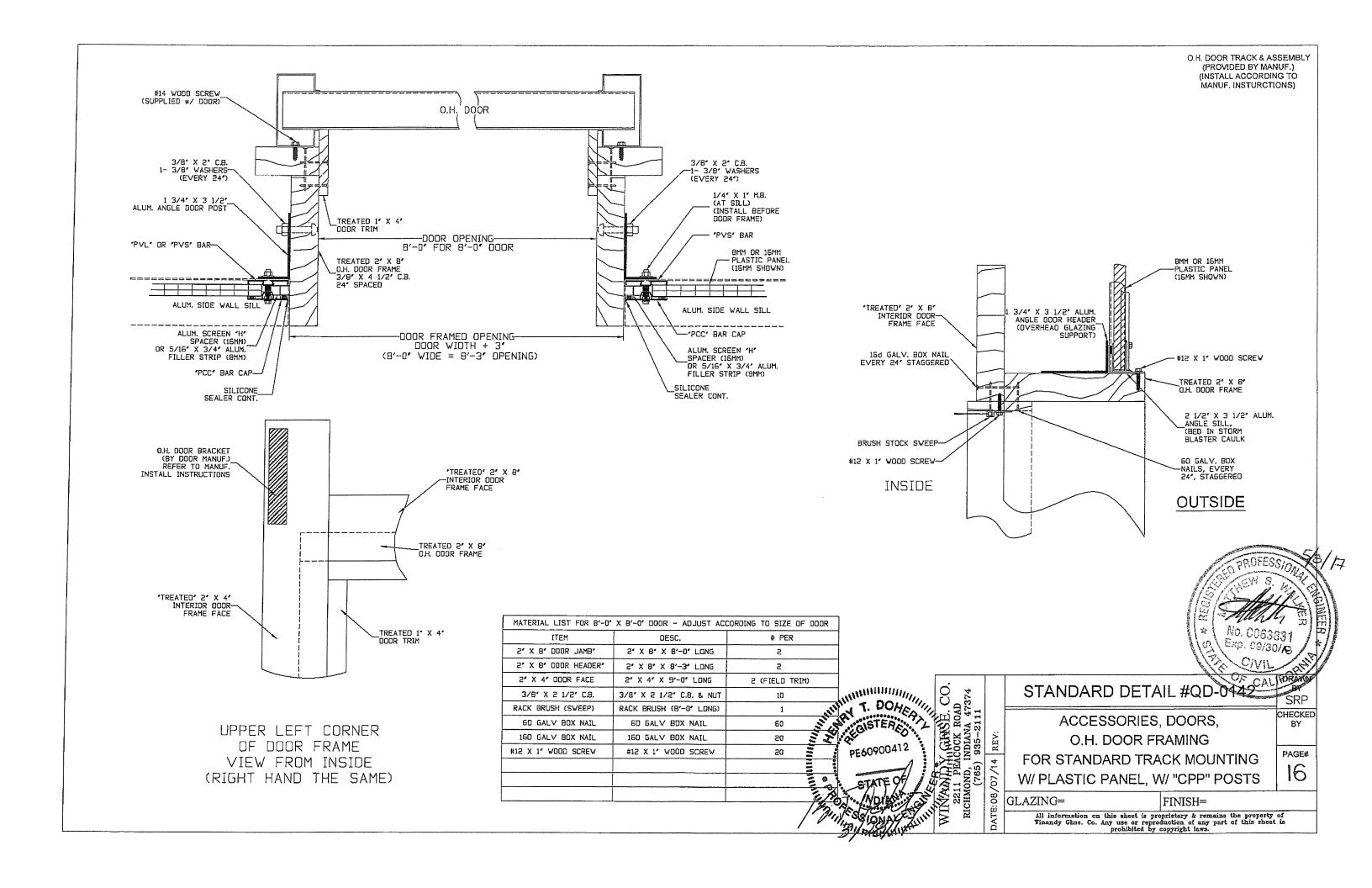


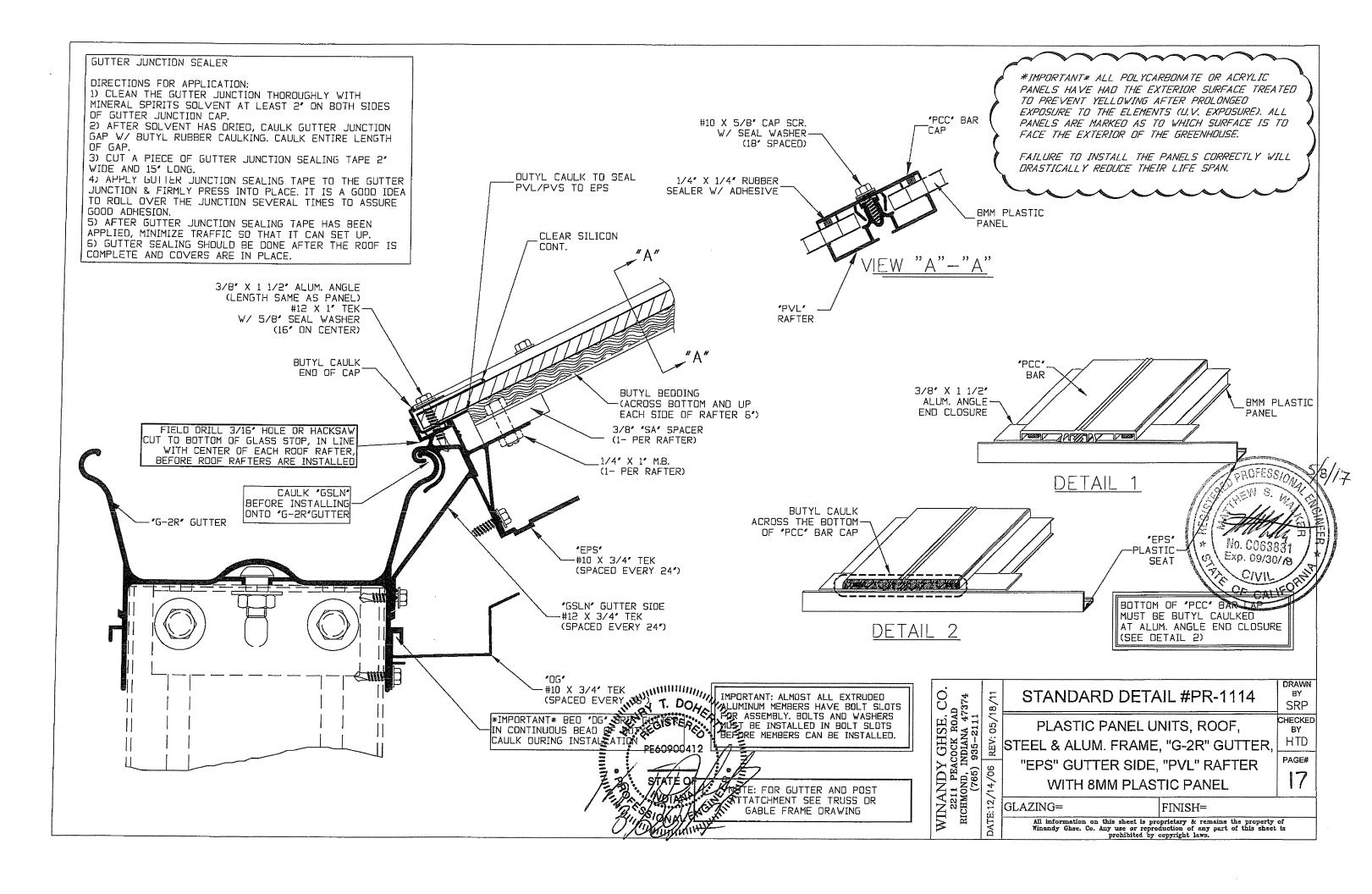


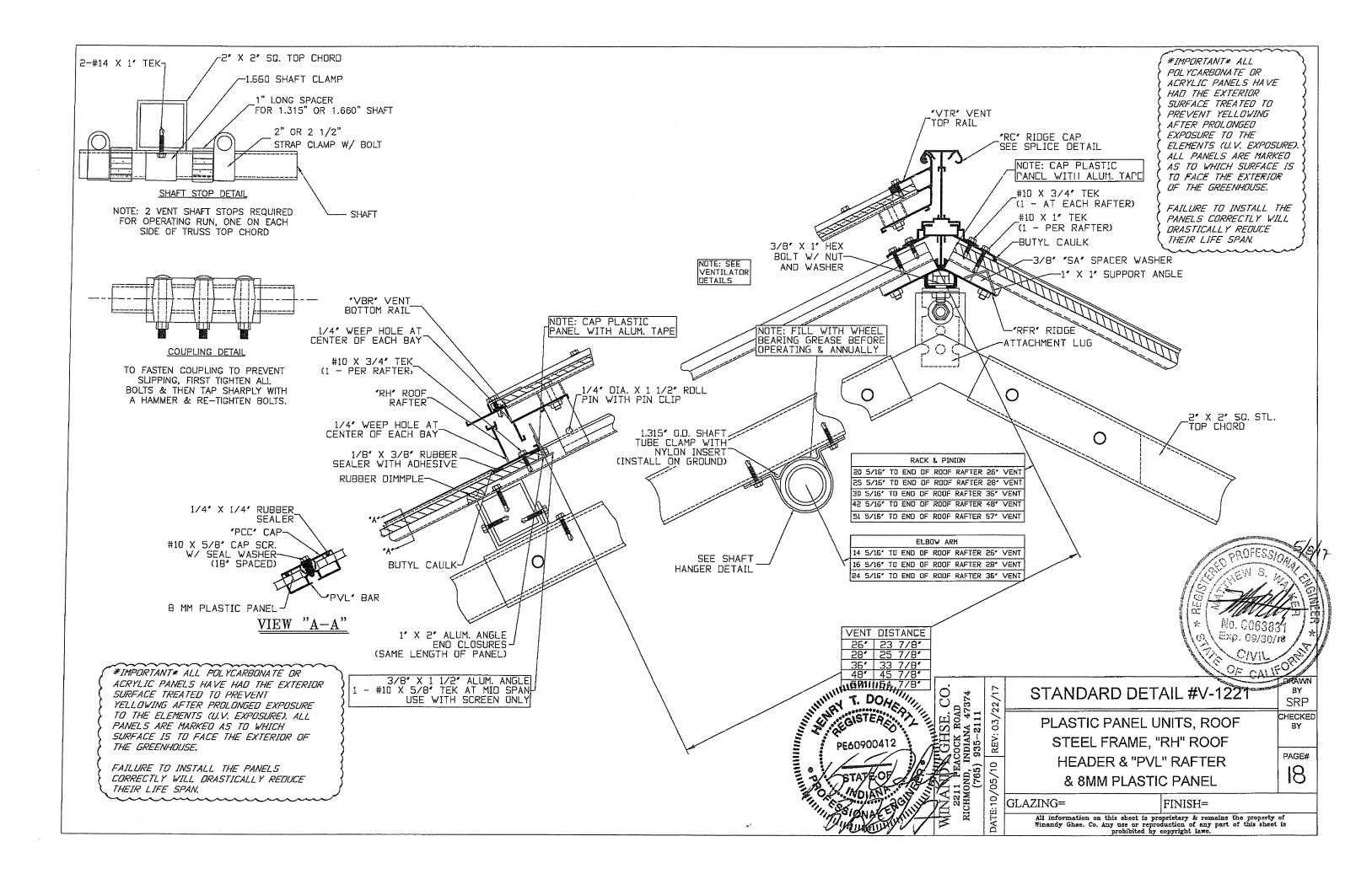


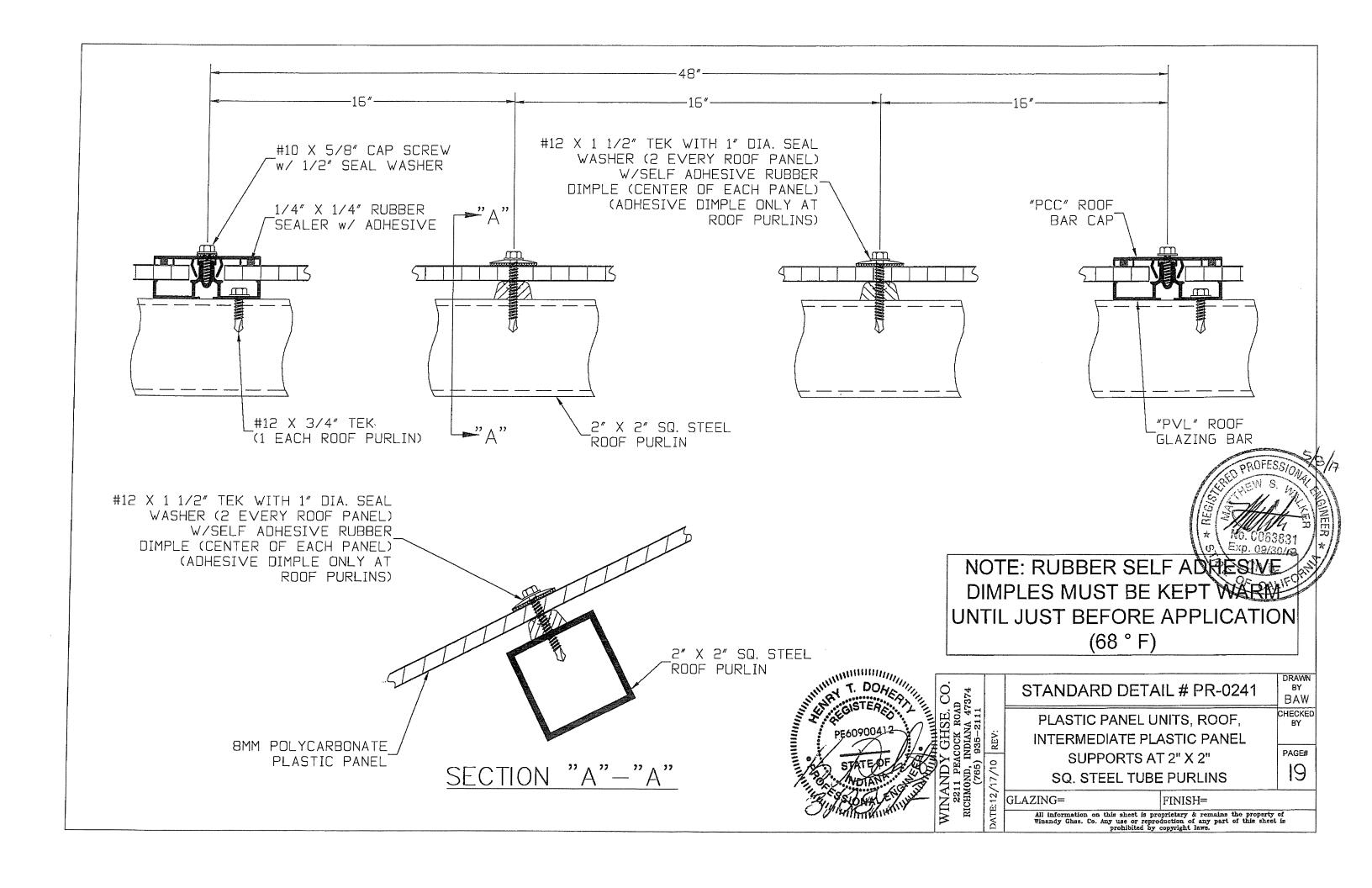


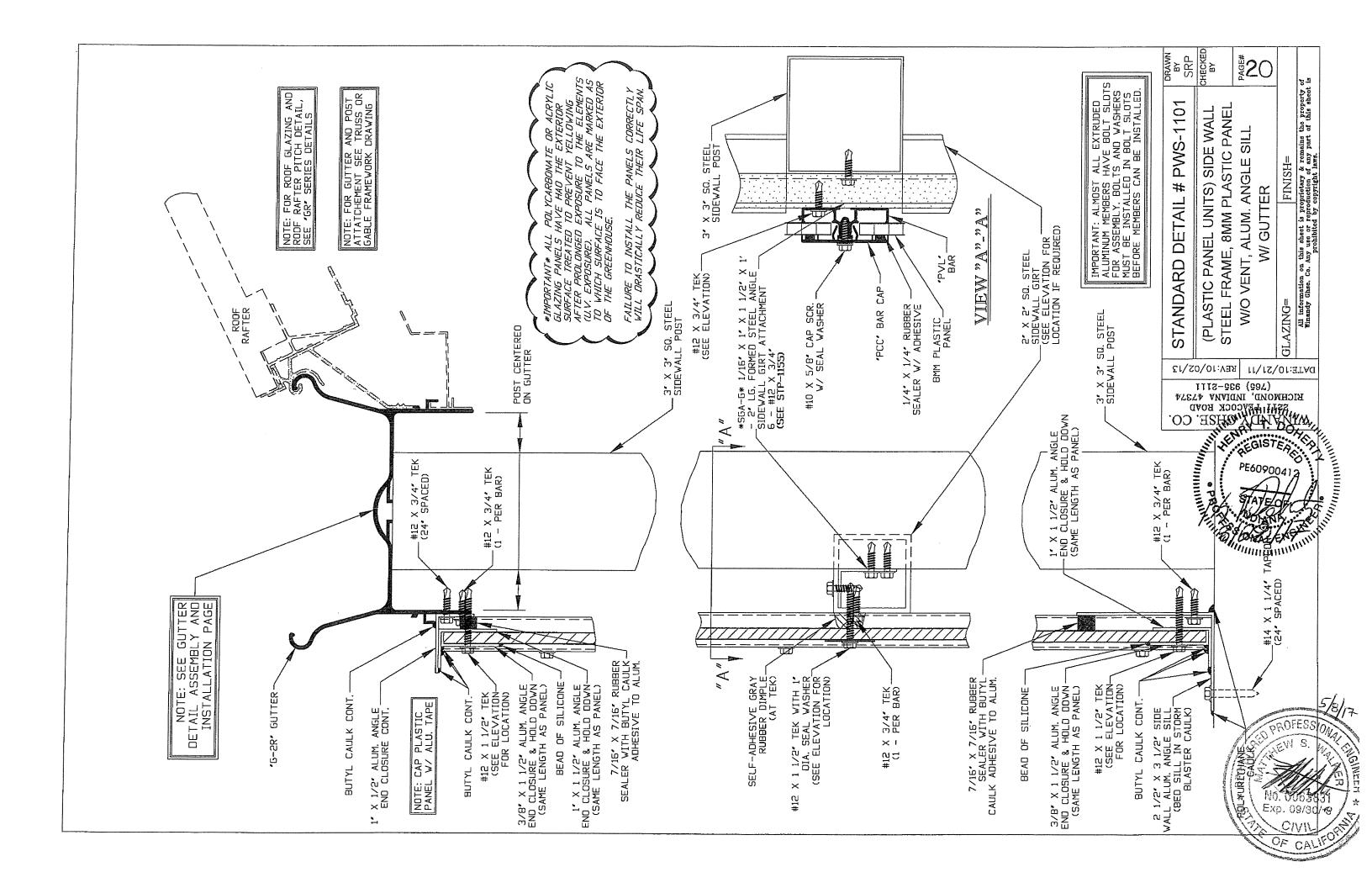


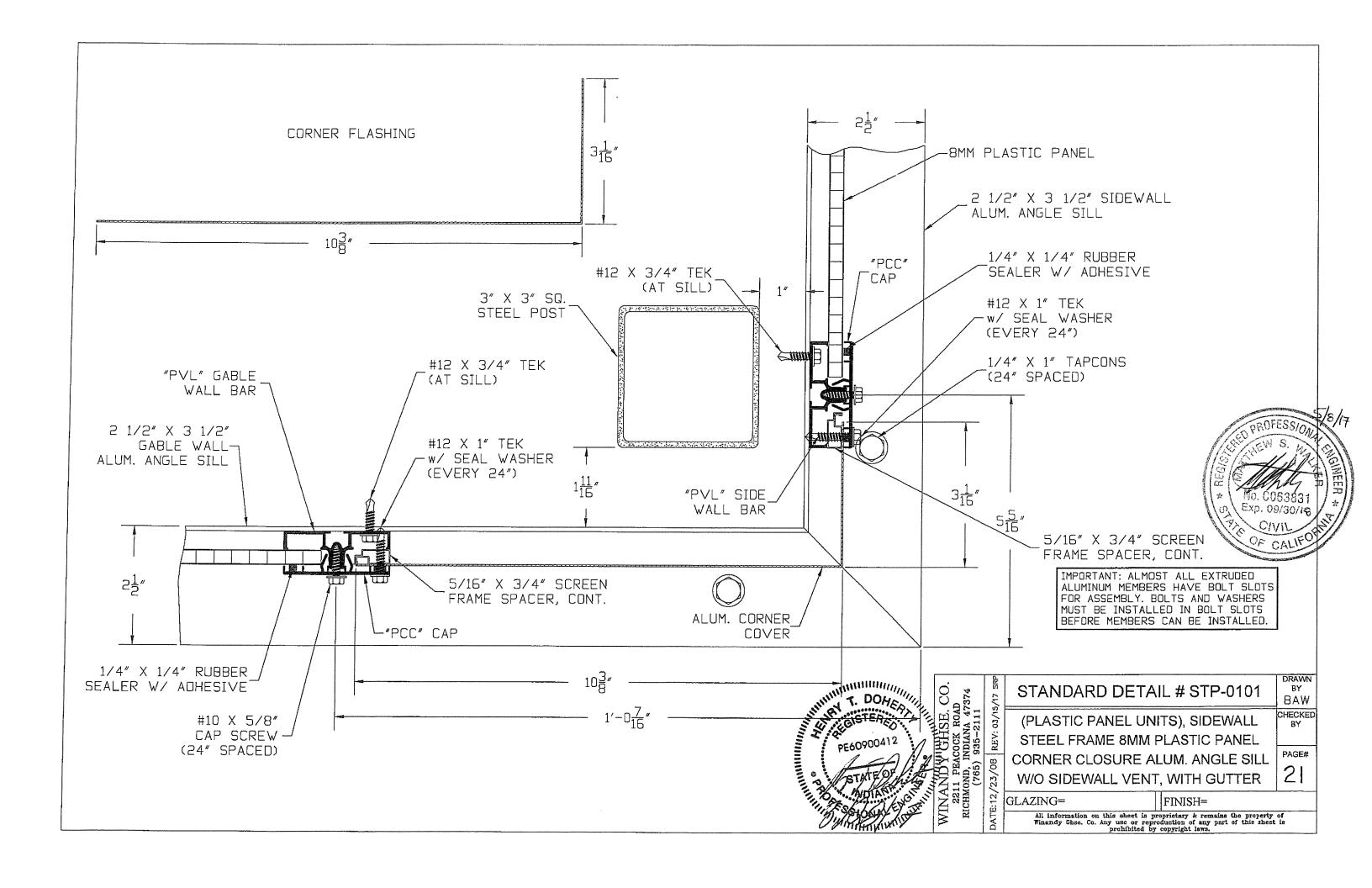


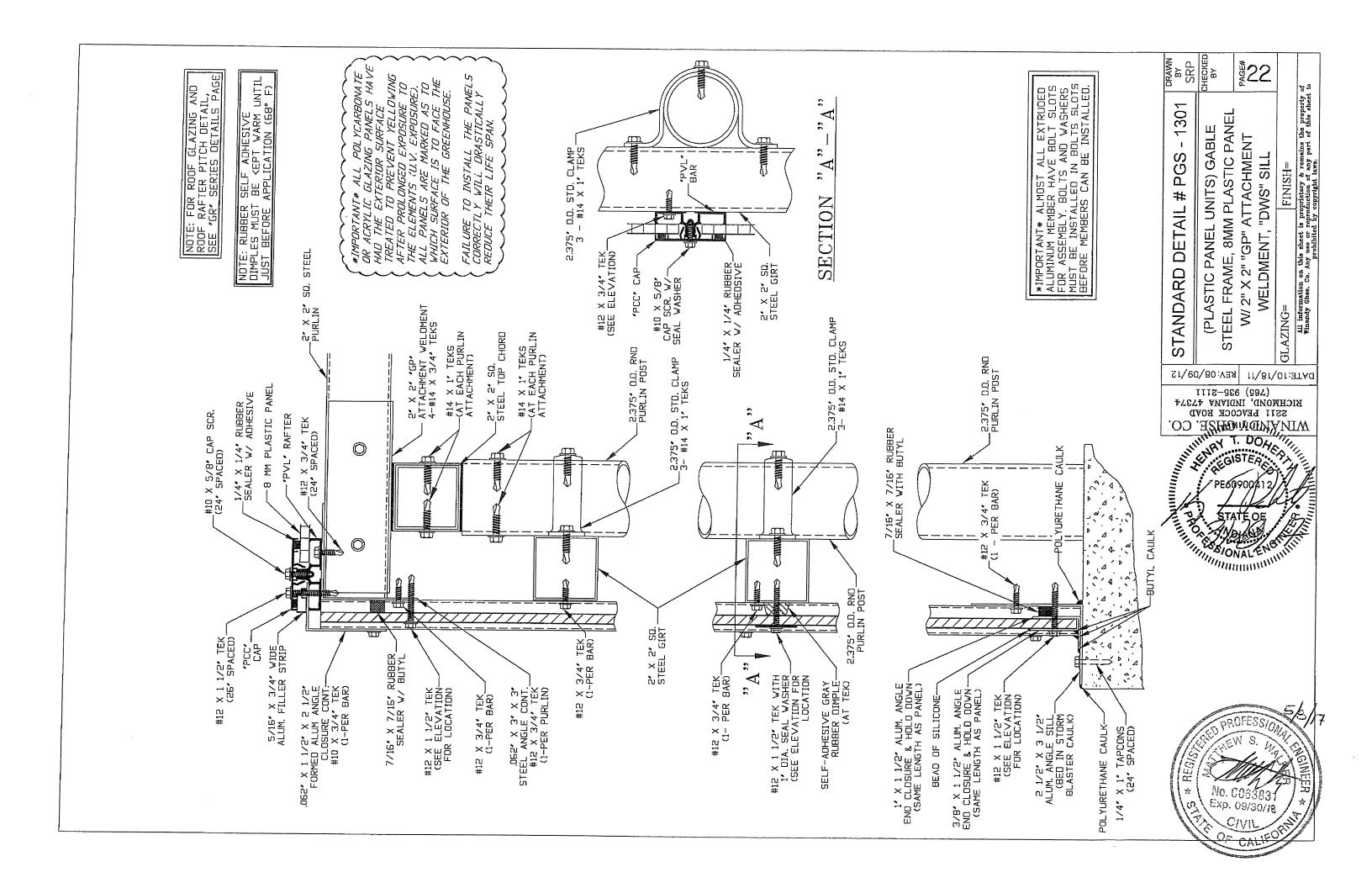


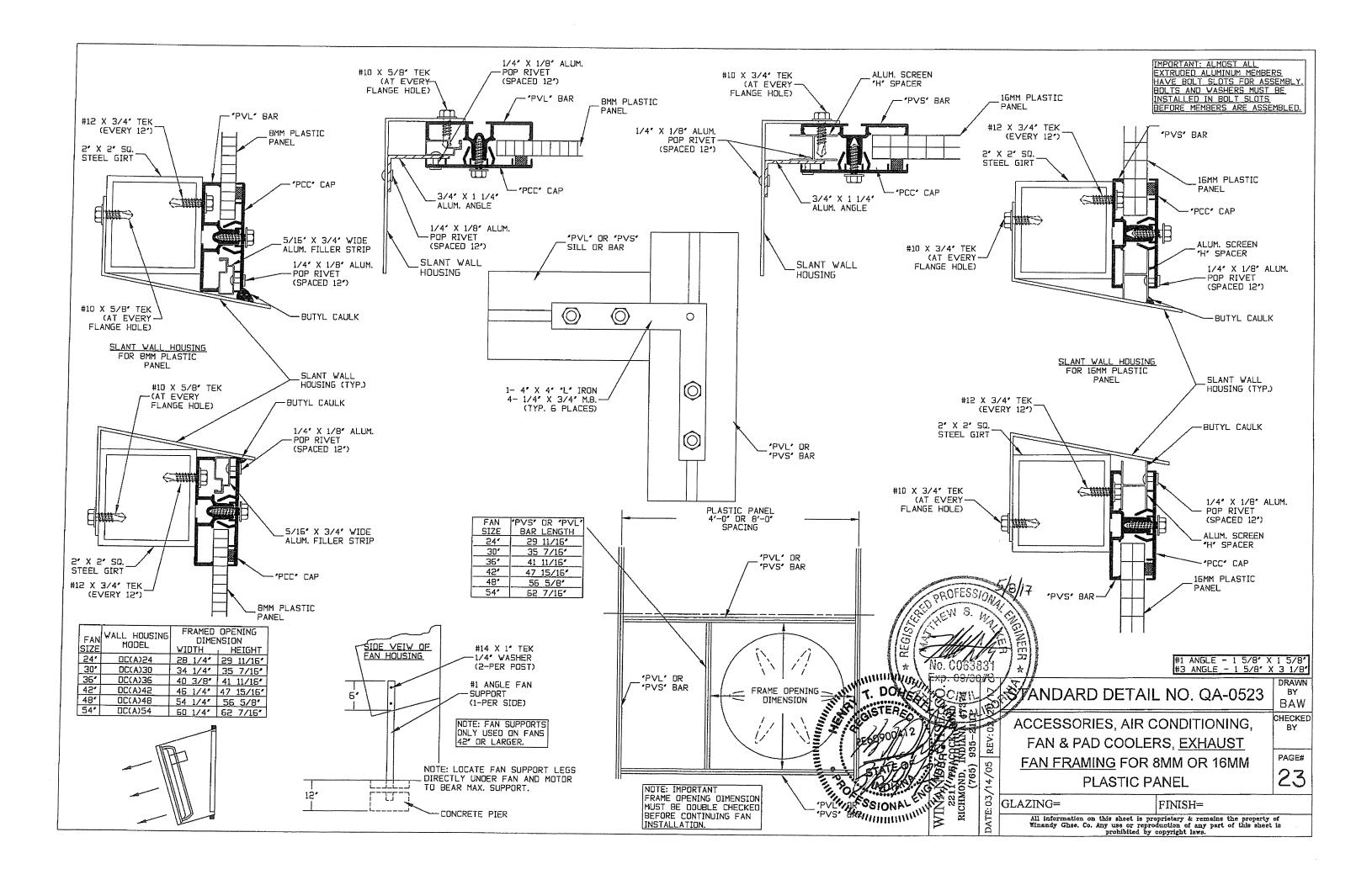


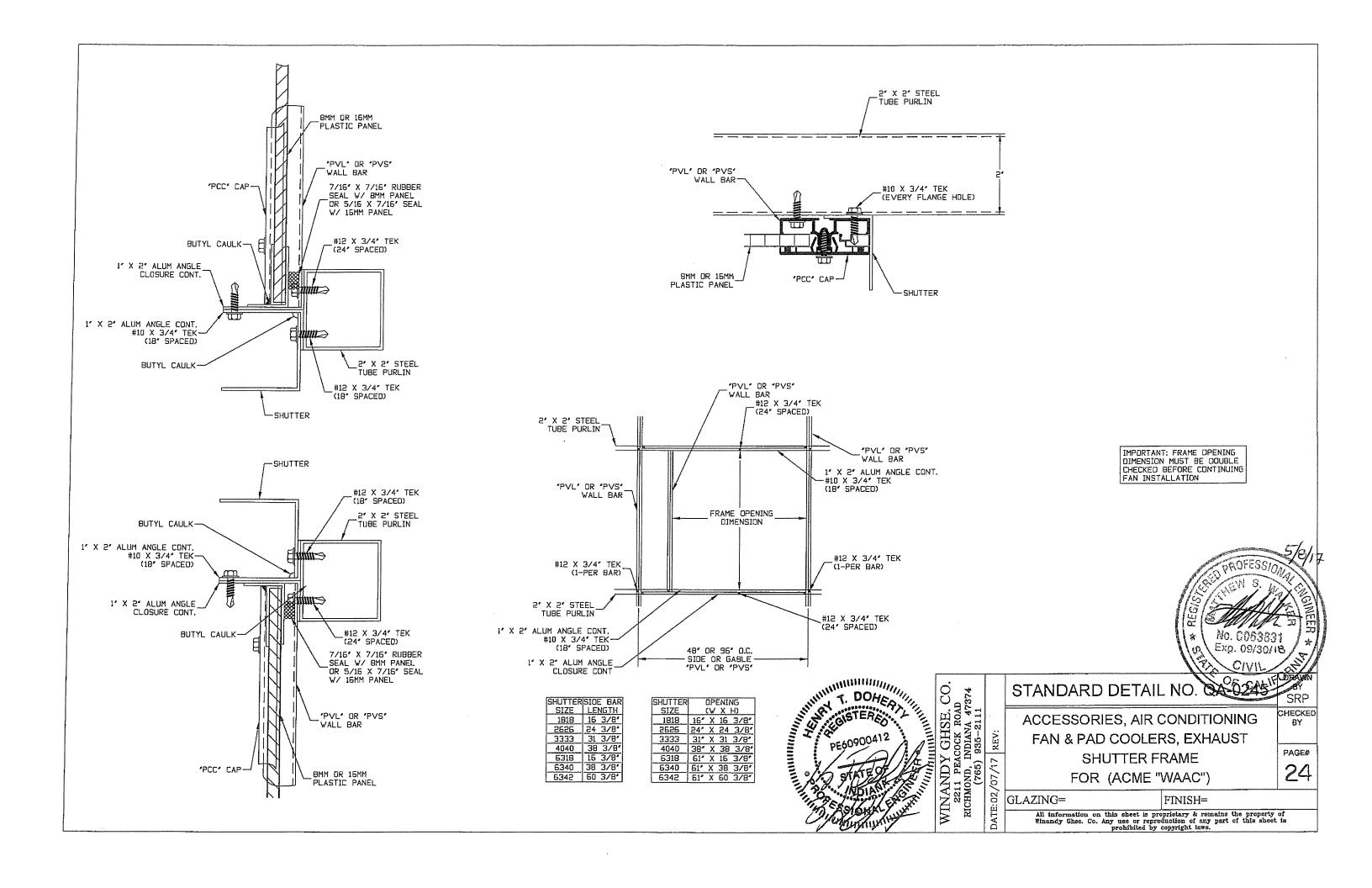


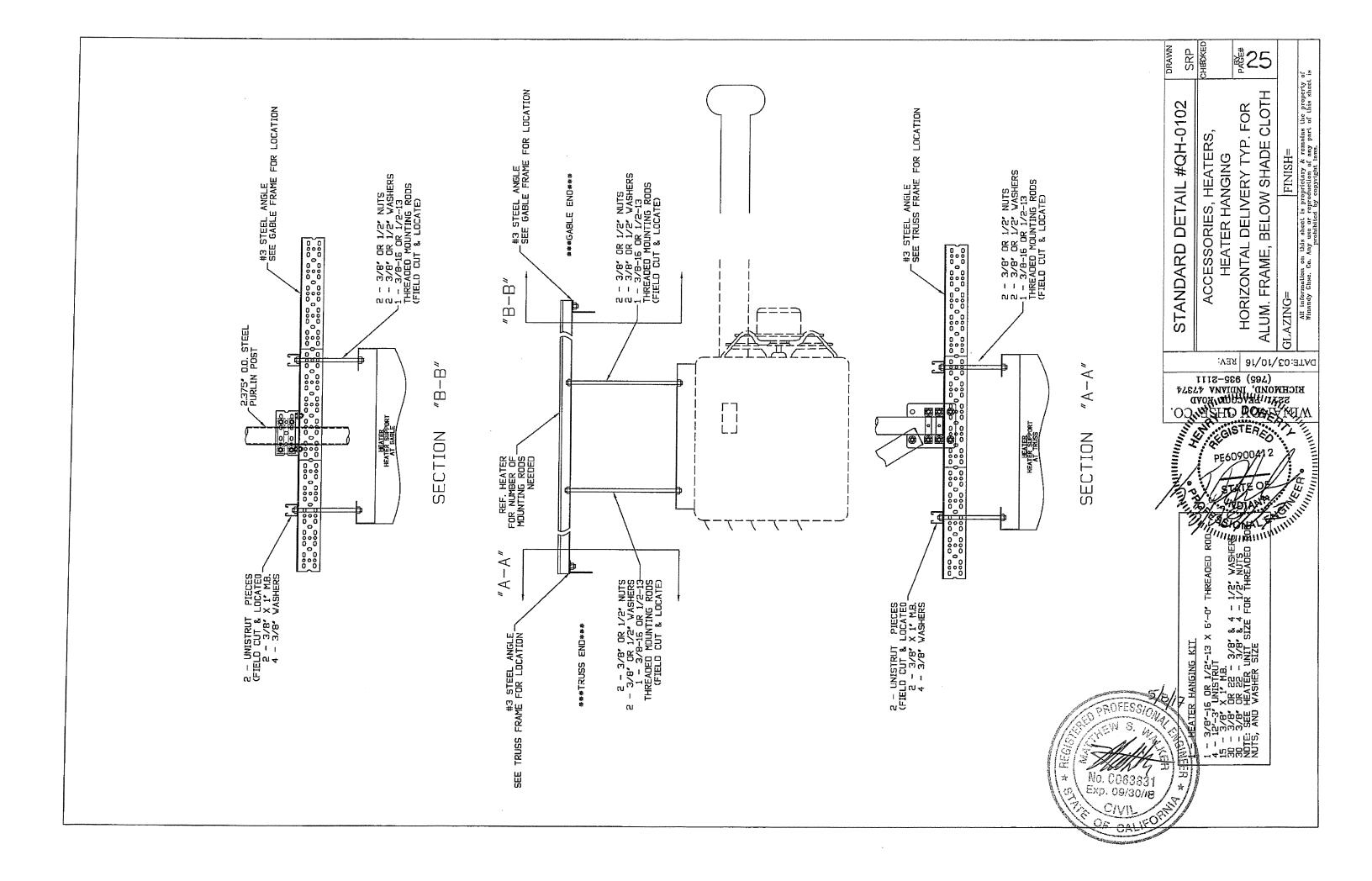


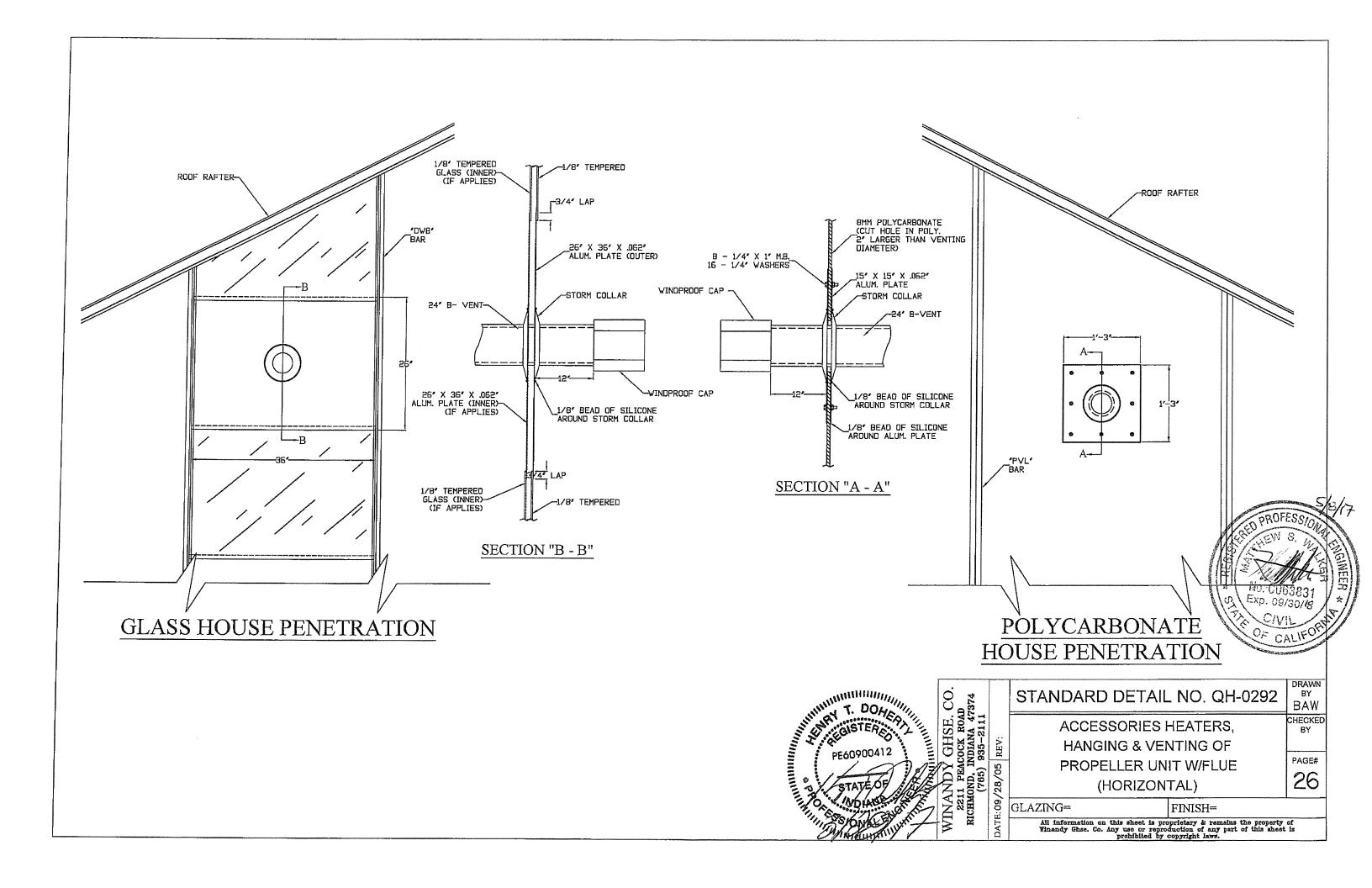


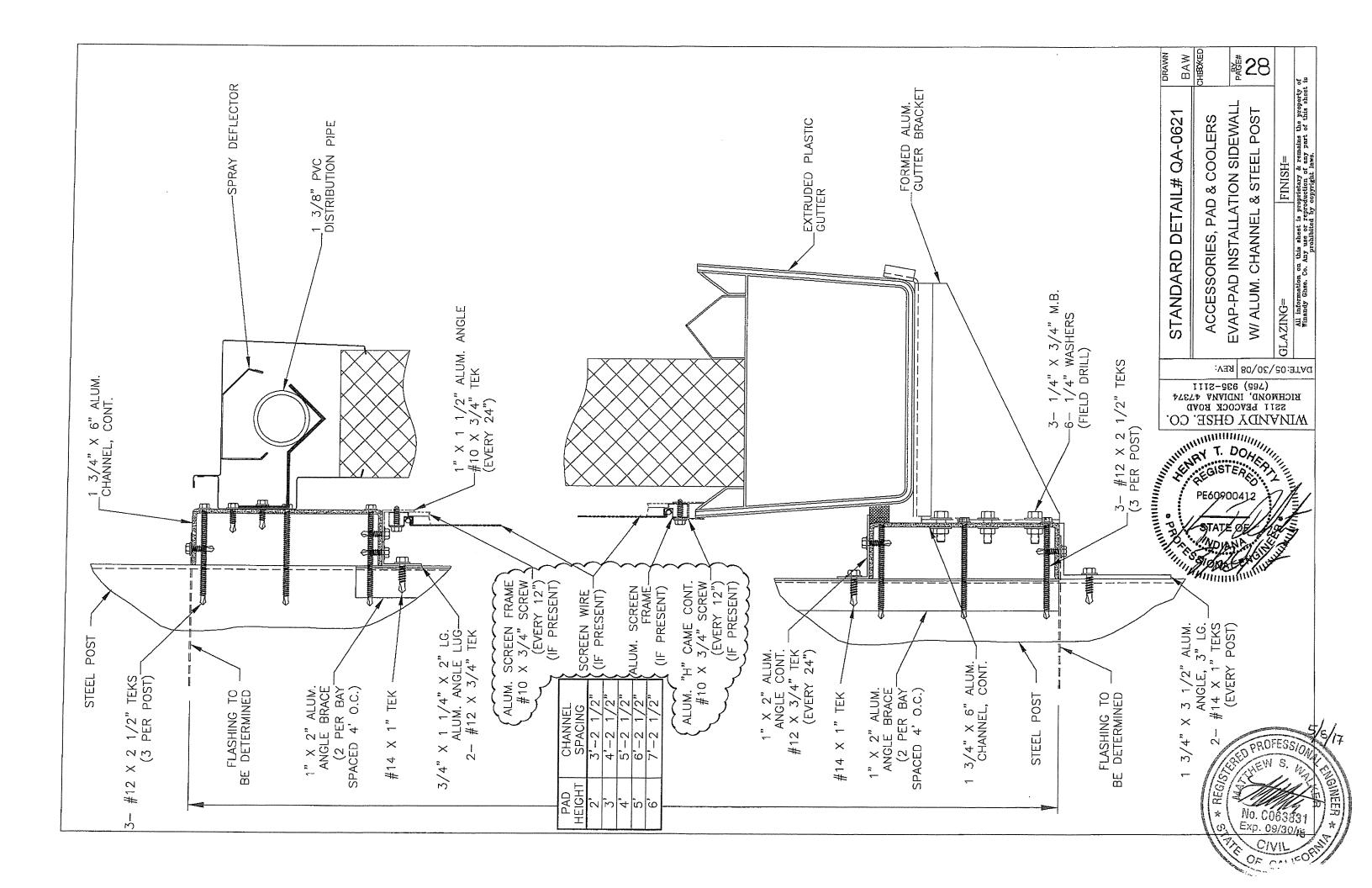


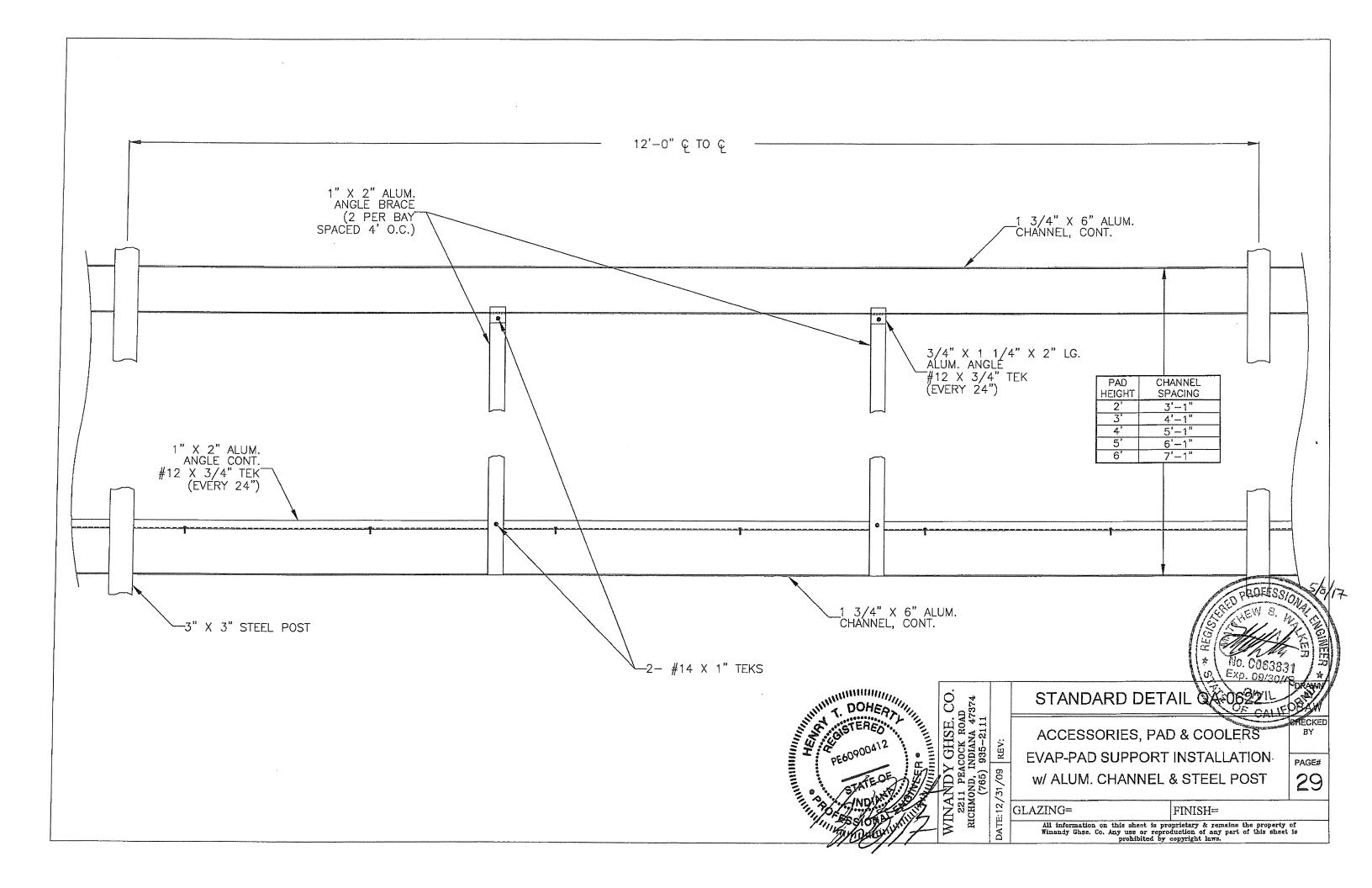


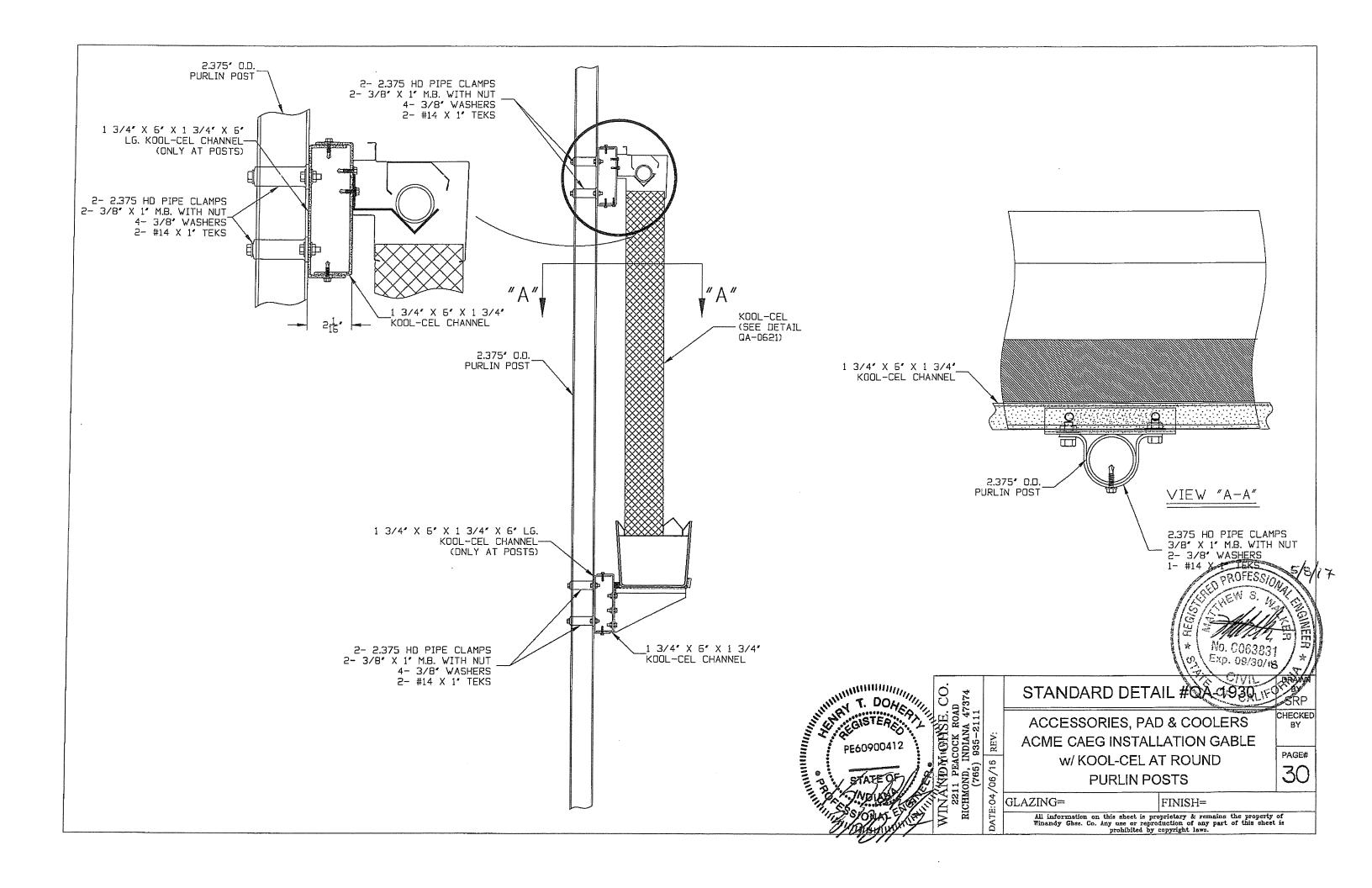


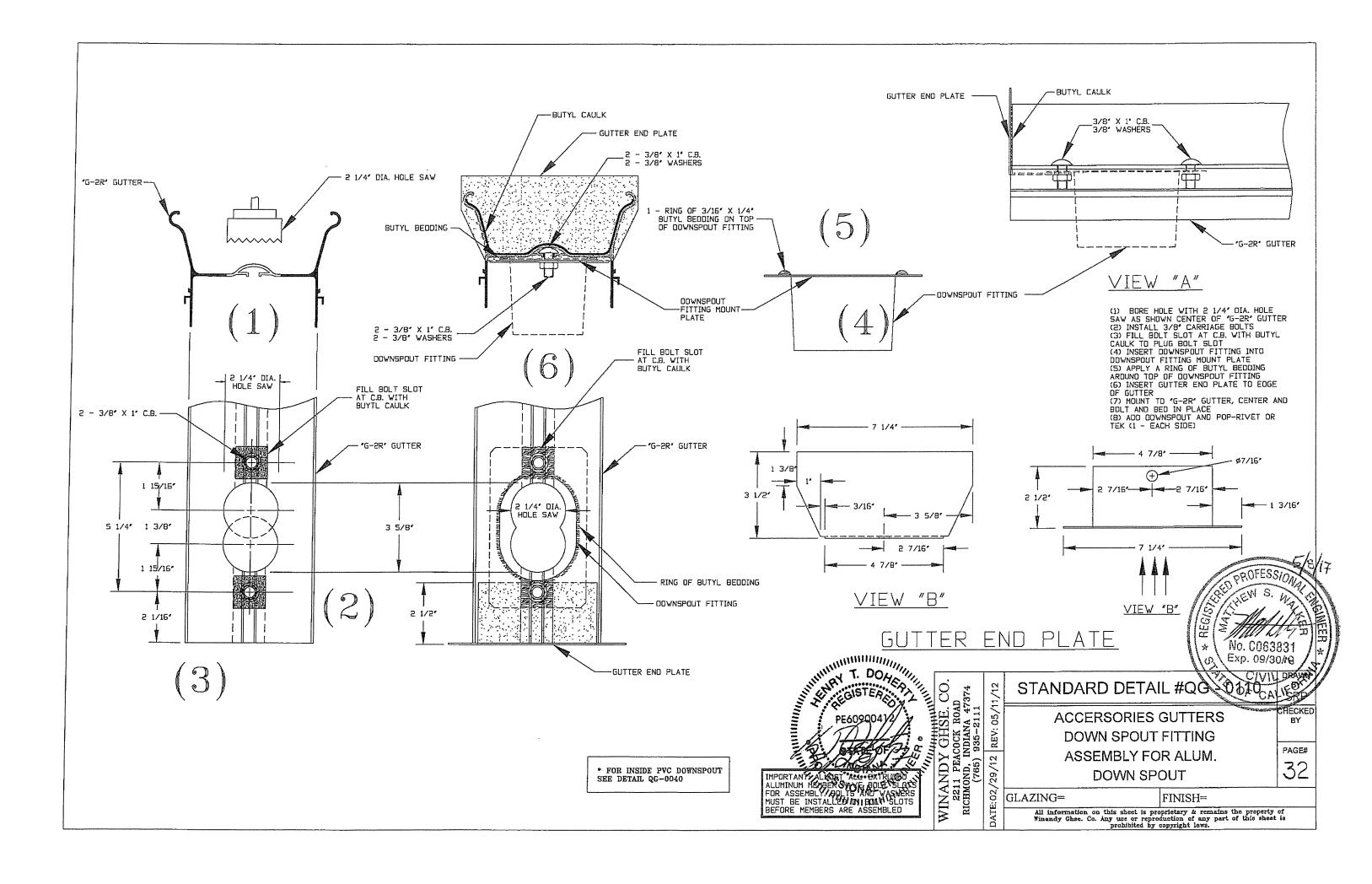


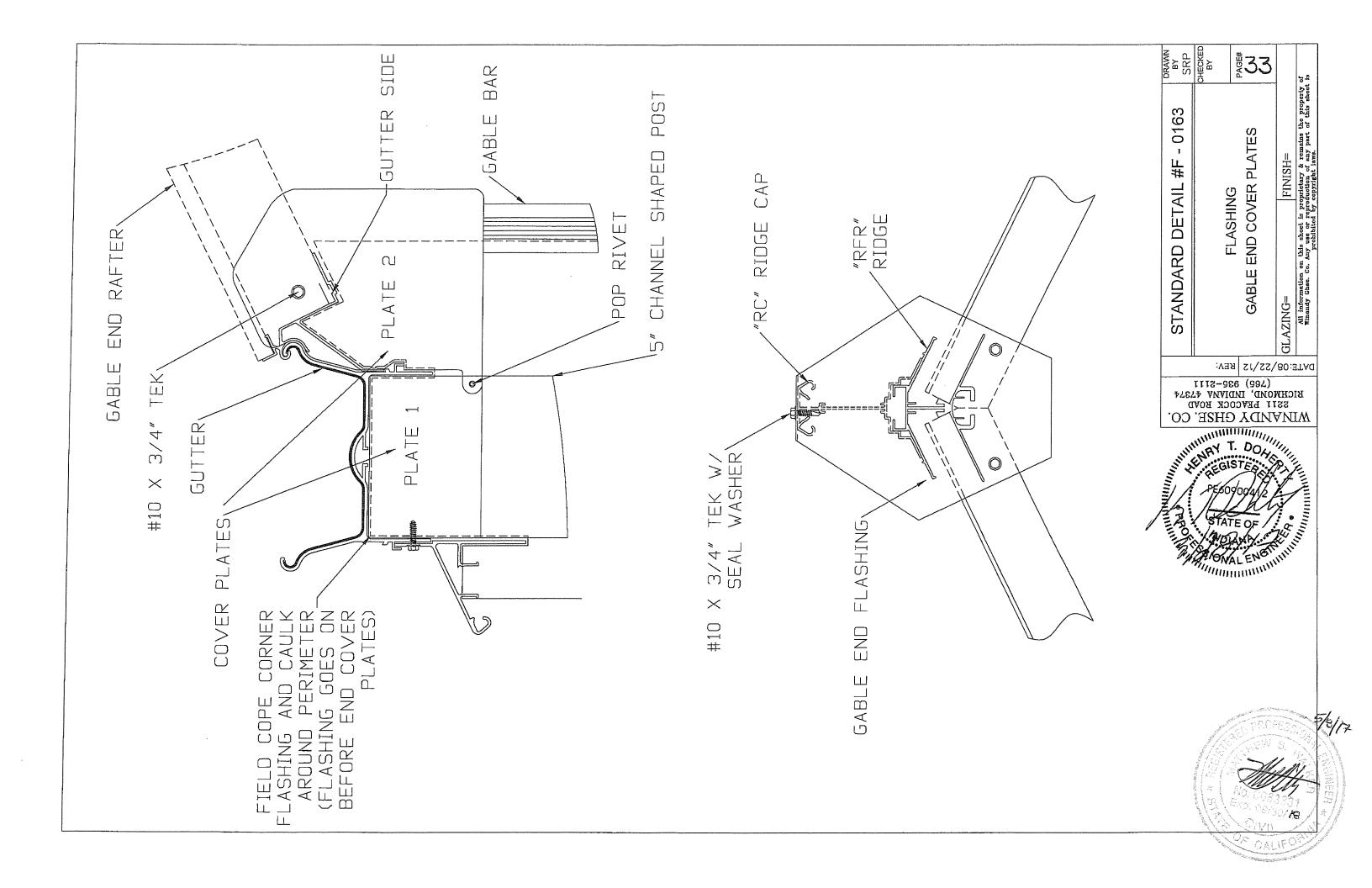


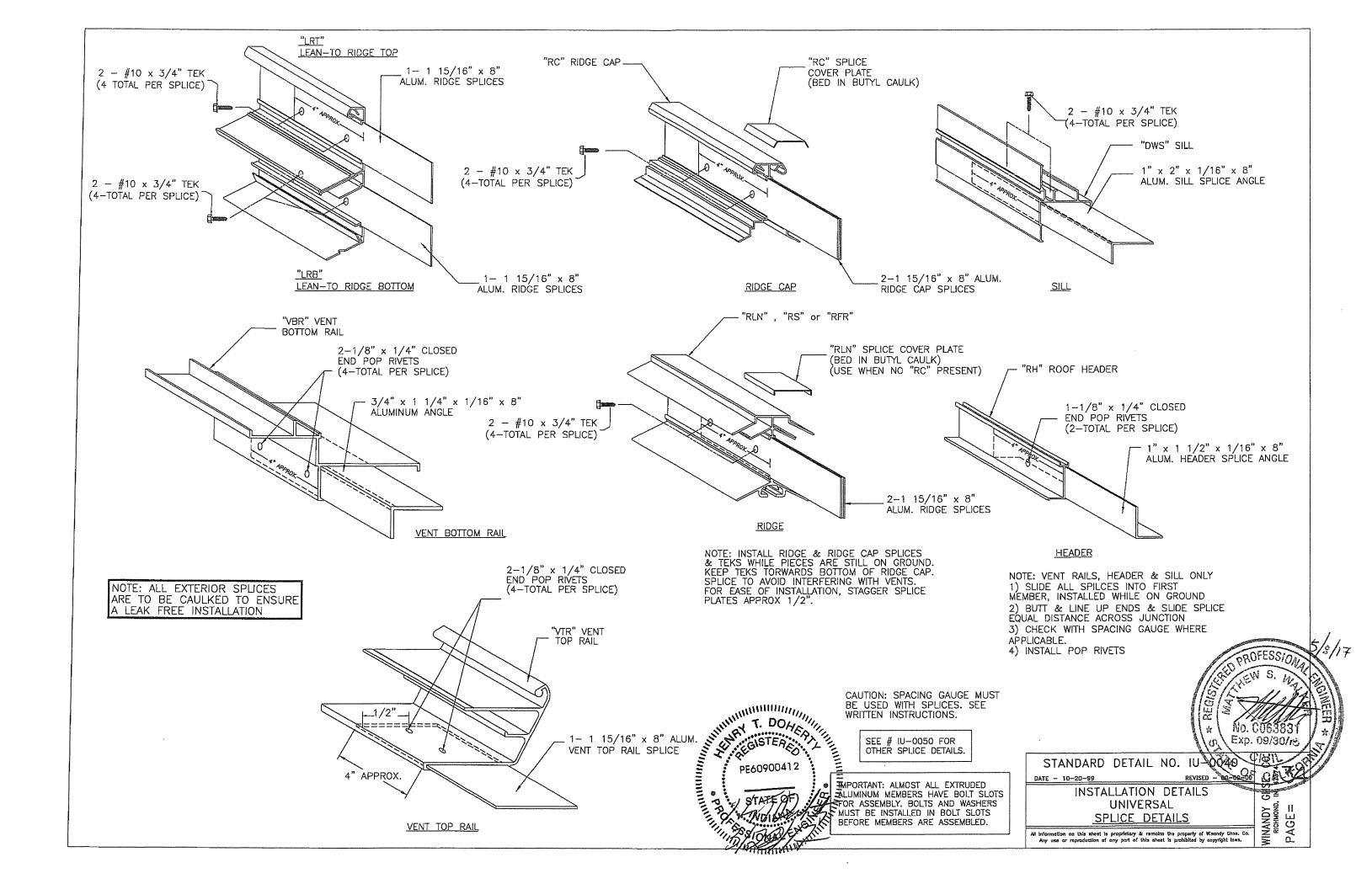


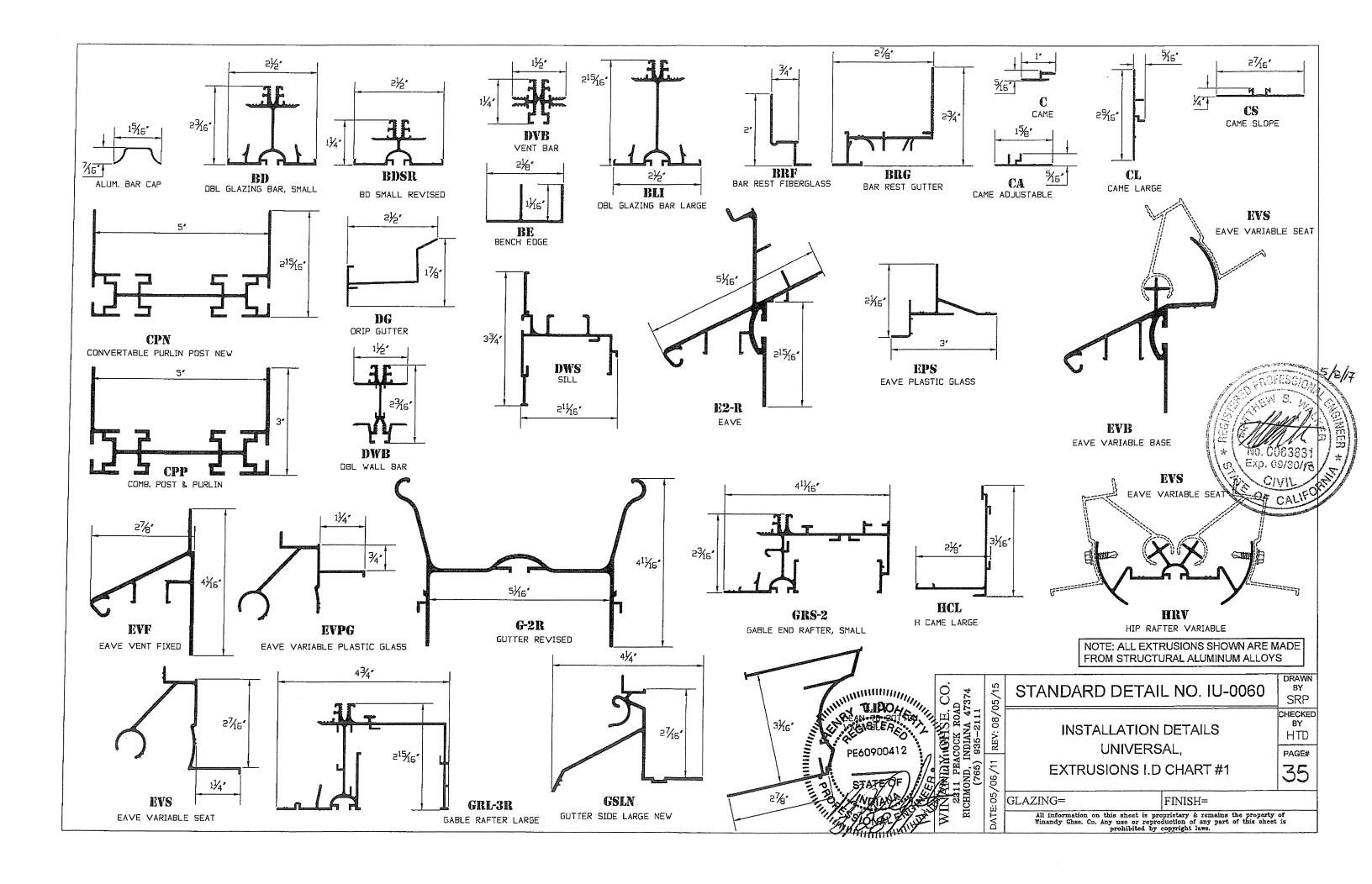


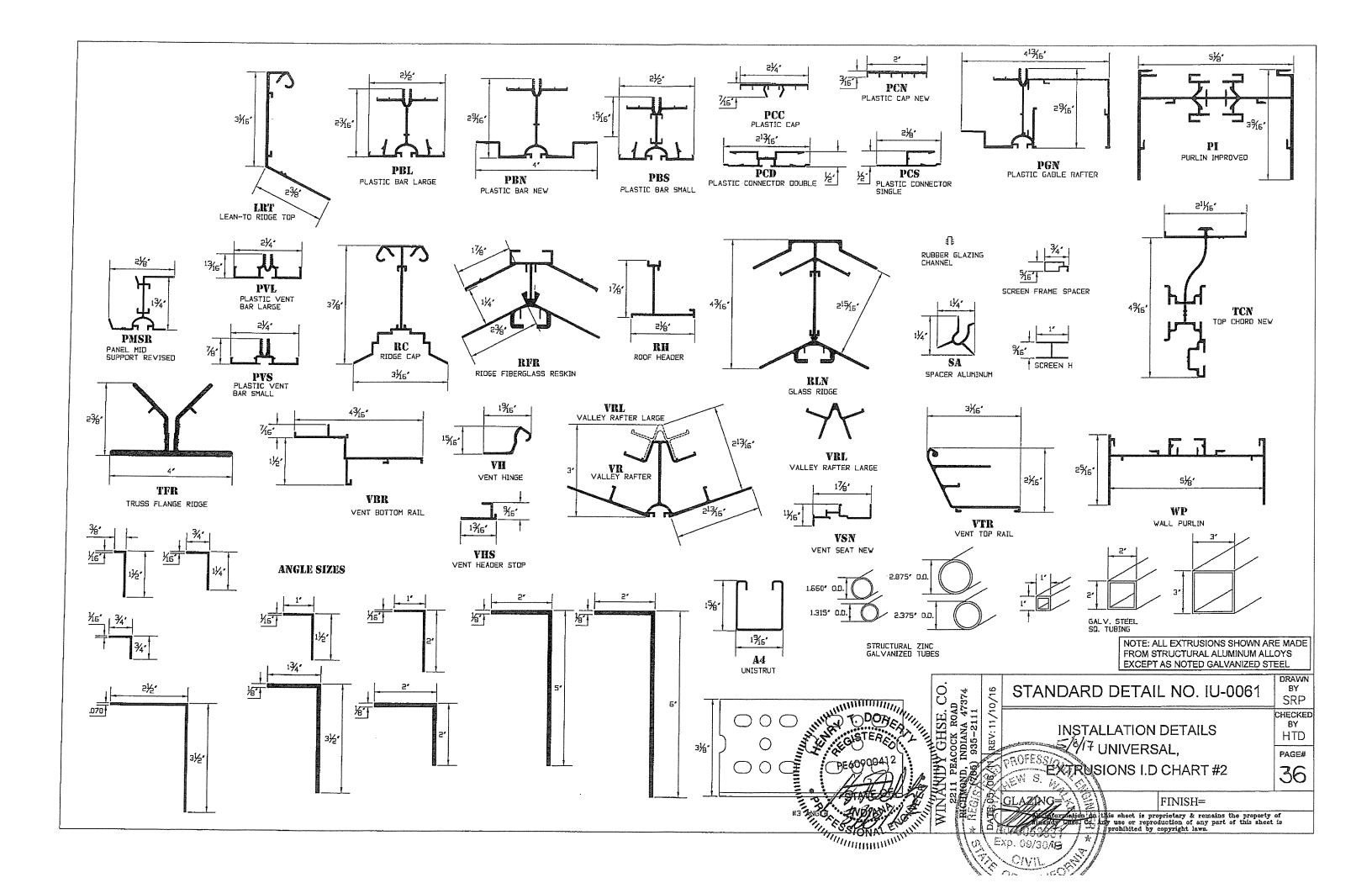


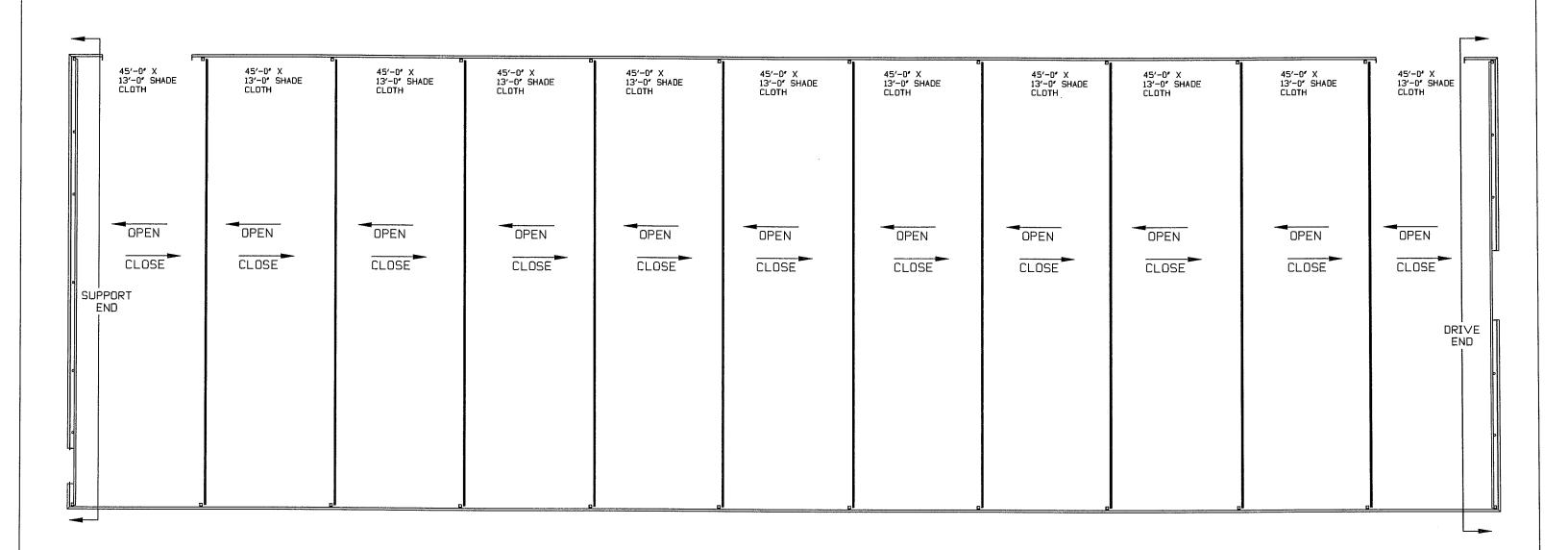


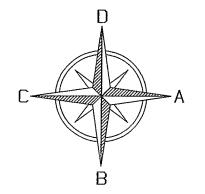


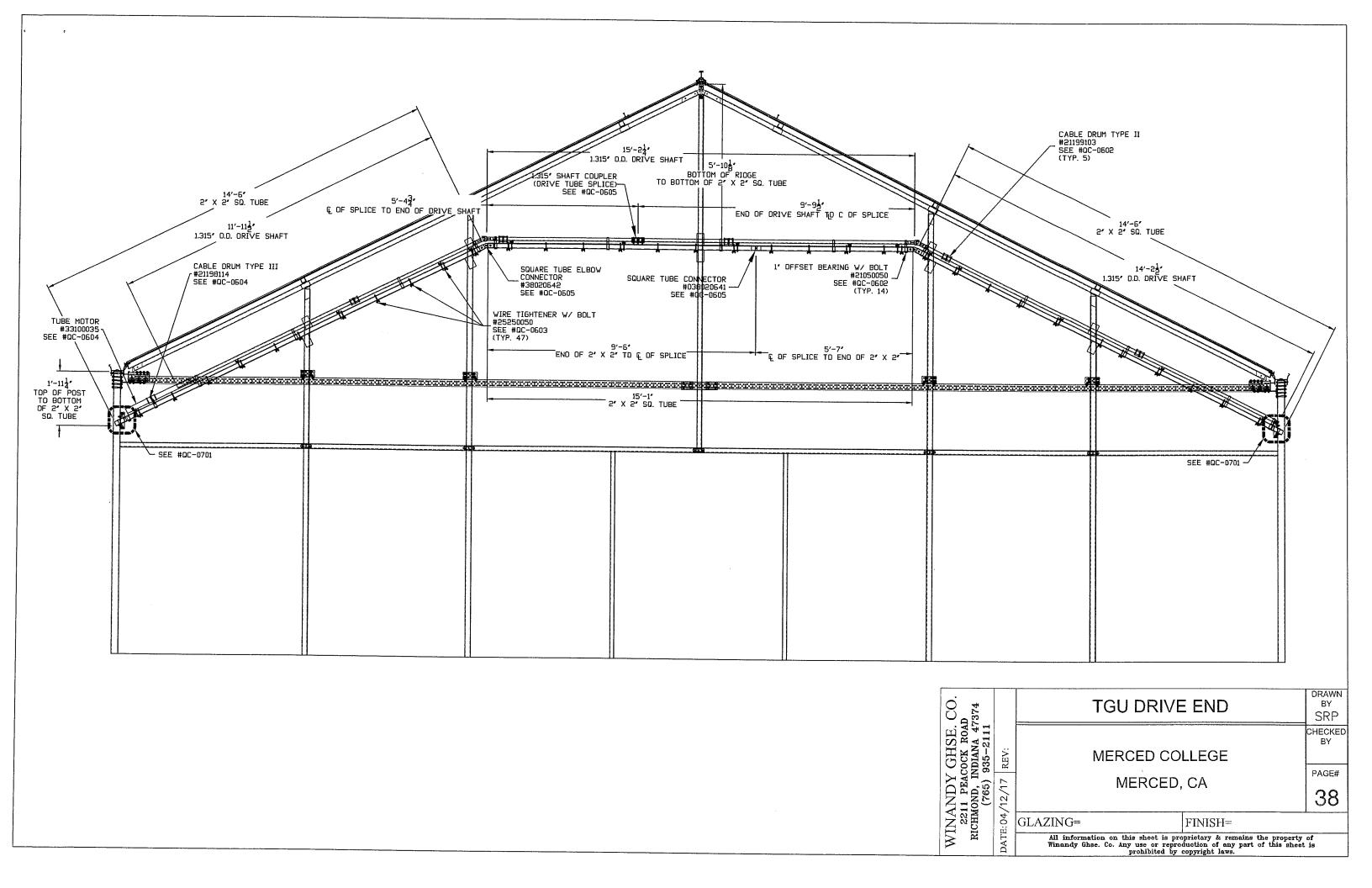


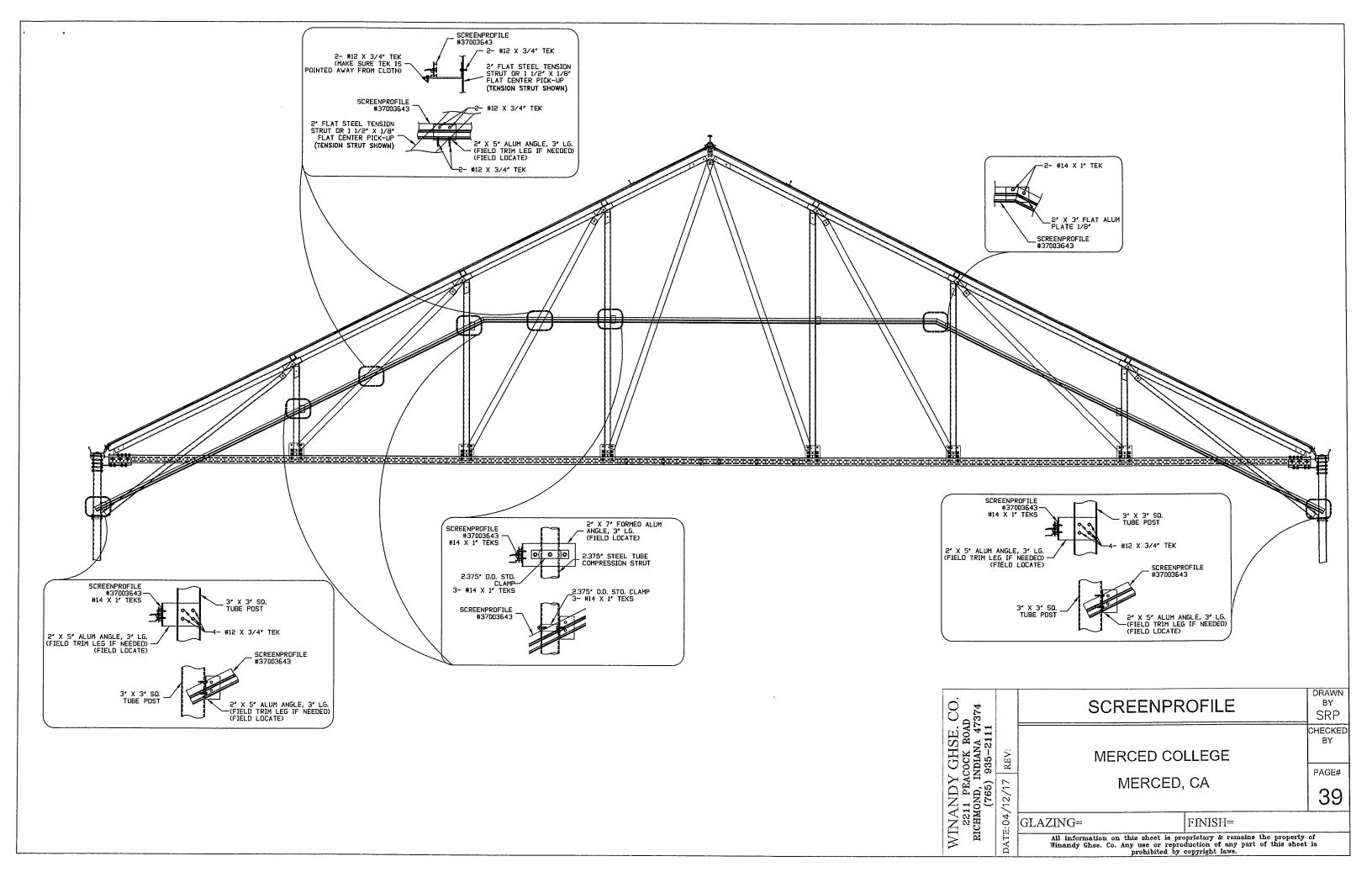


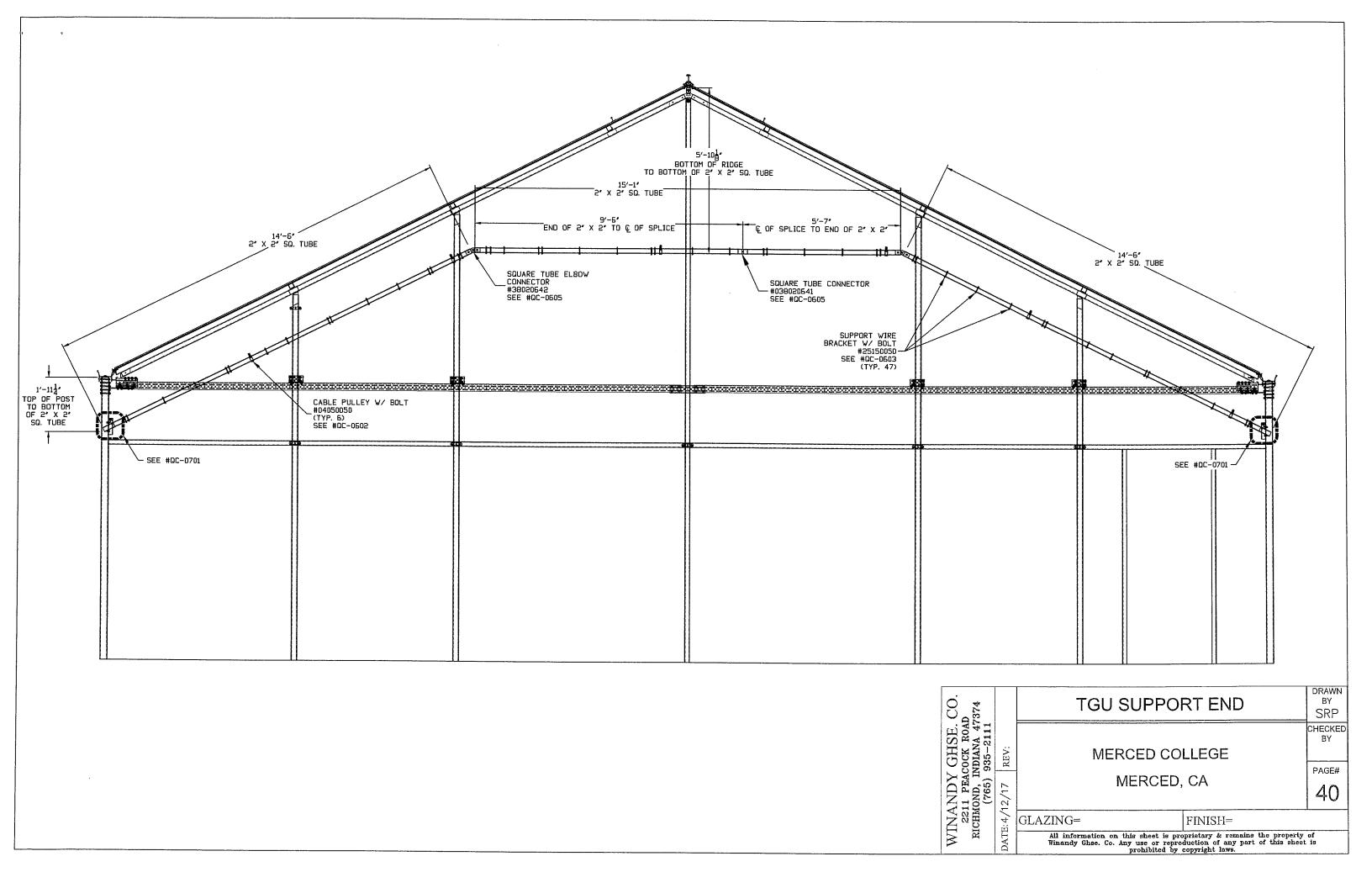


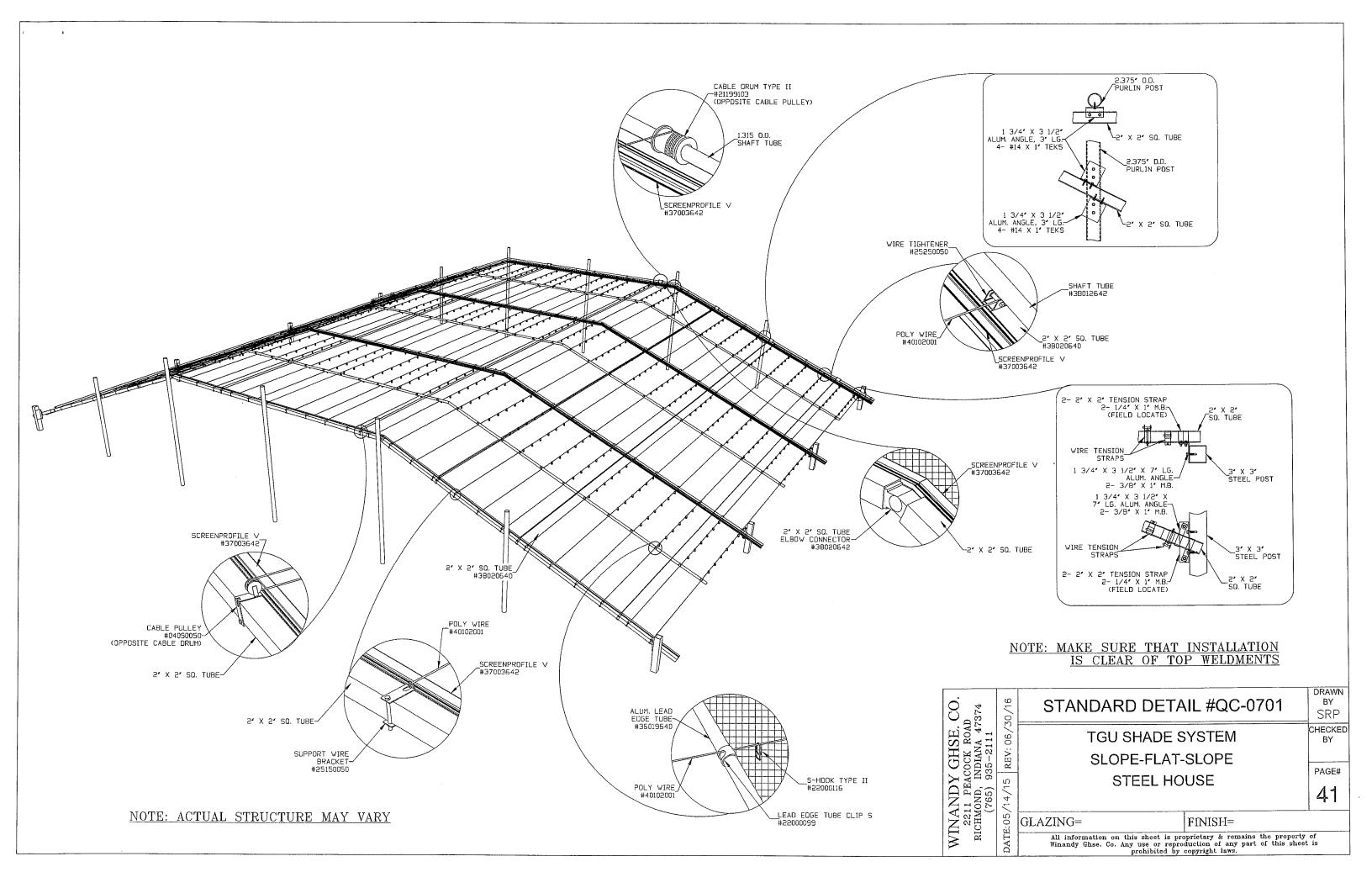


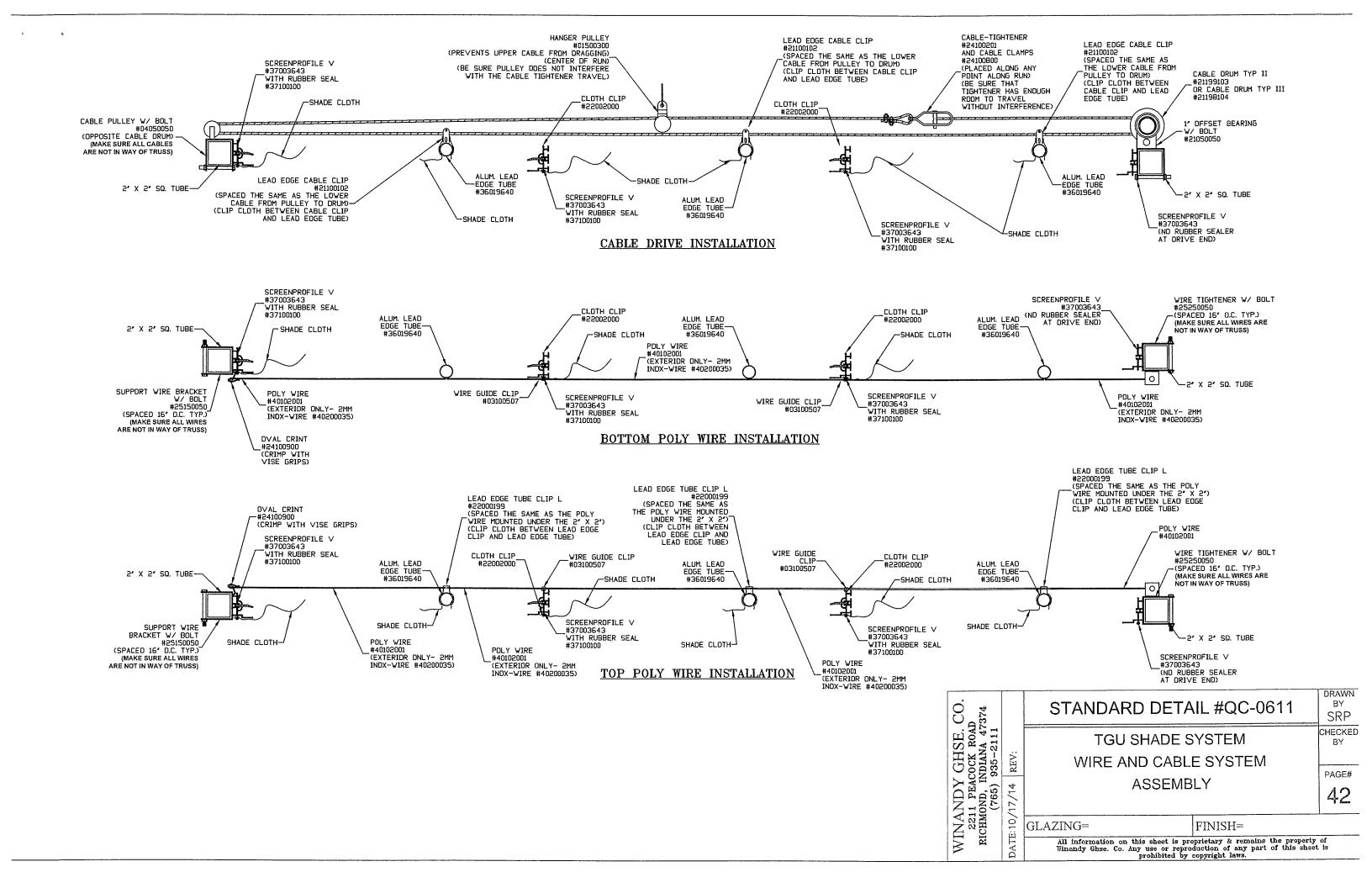


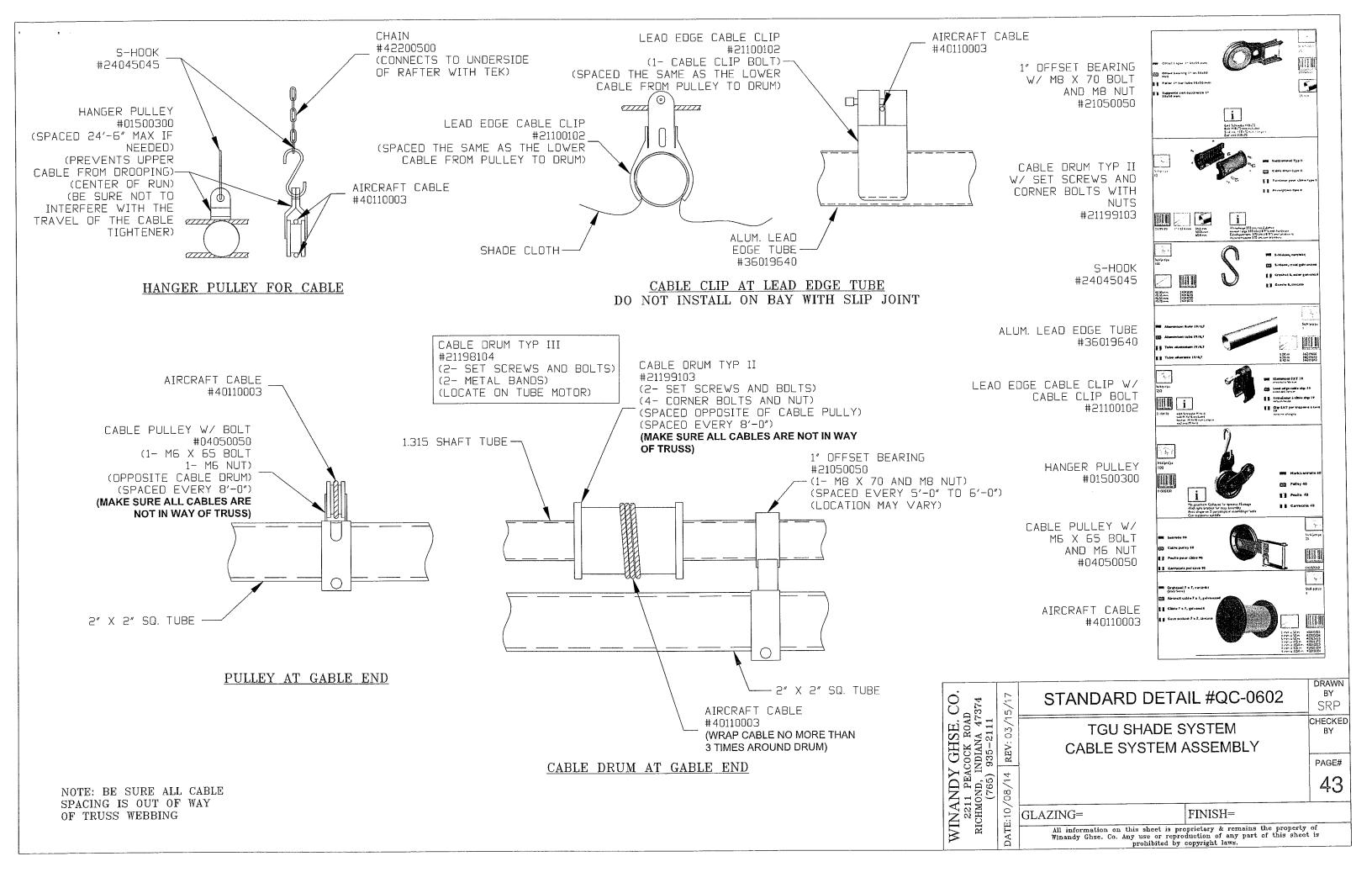


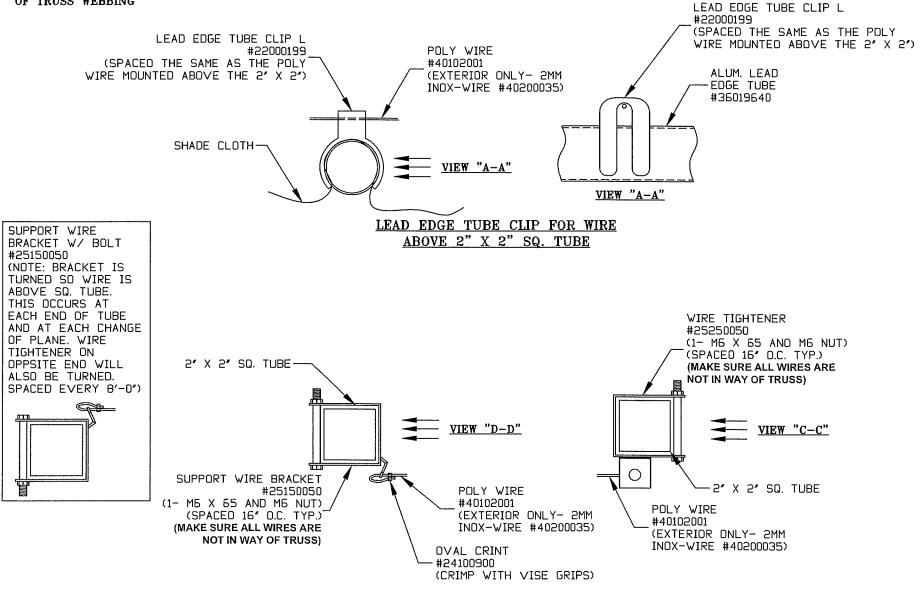


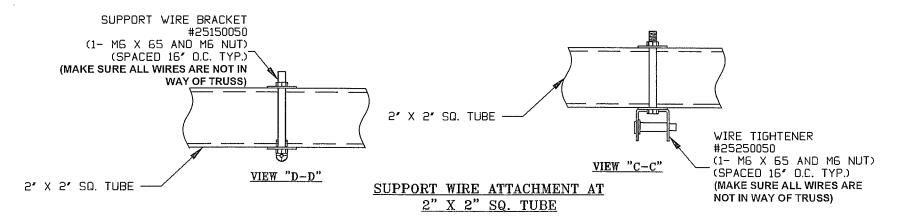


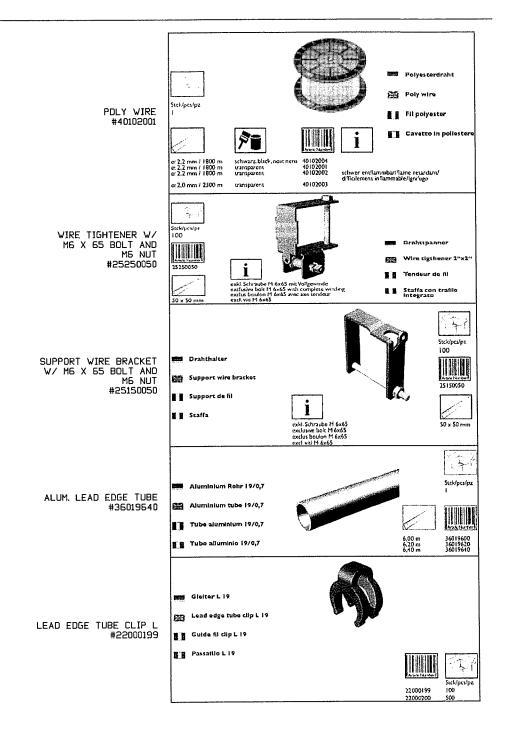


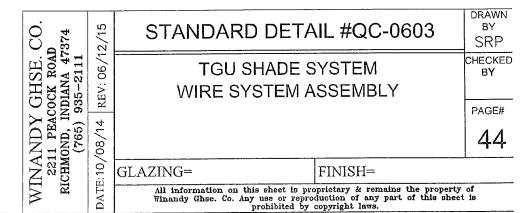

WINANDY GHSE, CO. 2211 PEACOCK ROAD RICHMOND, INDIANA 47374 (765) 935–2111	DATE:04/12/17 REV:	TGU LAYOUT		
		MERCED COLLEGE MERCED, CA		
		GLAZING= All information on this sheet is pro Winandy Ghsc. Co. Any use or repro- prohibited by	luction of any part of this sheet	of is

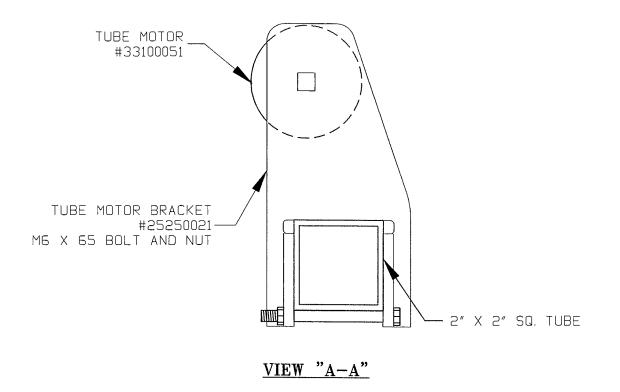


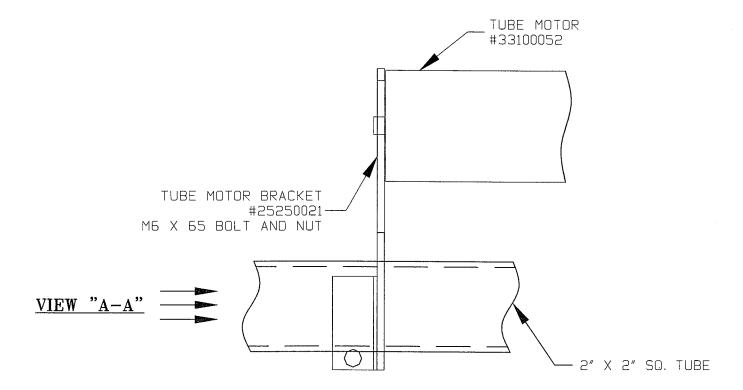


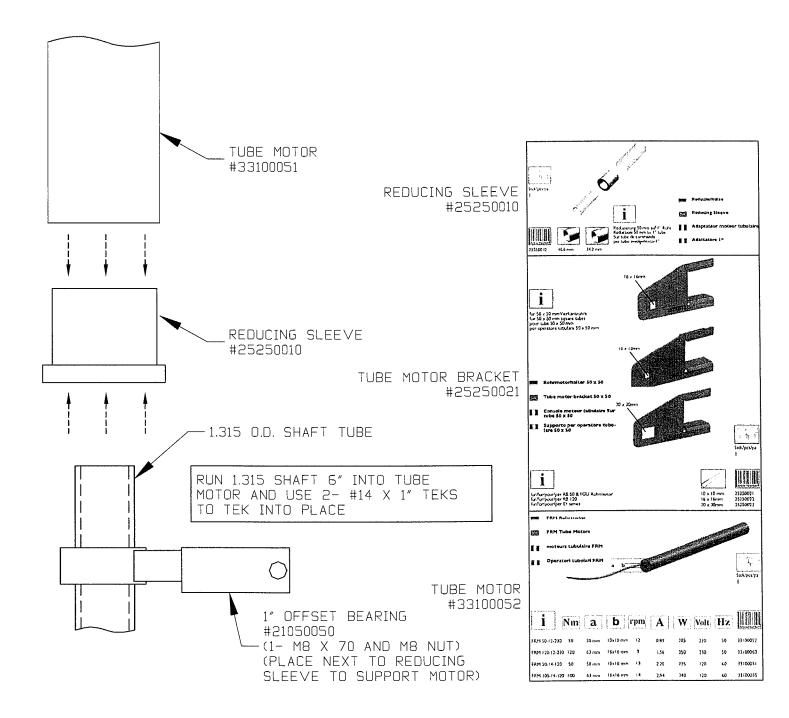


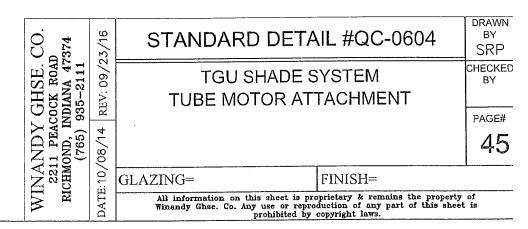


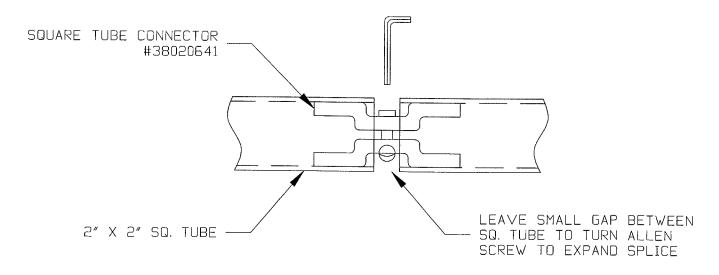

NOTE: FOR EXTERIOR SHADE SYSTEM USE 2MM INOX-WIRE #40200035 IN PLACE OF POLY WIRE


NOTE: BE SURE ALL WIRE SPACING IS OUT OF WAY OF TRUSS WEBBING

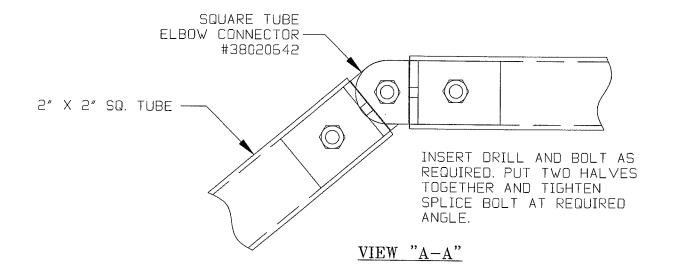


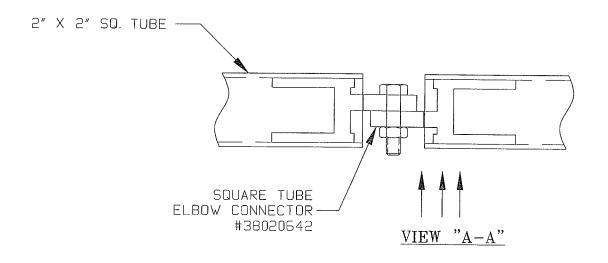


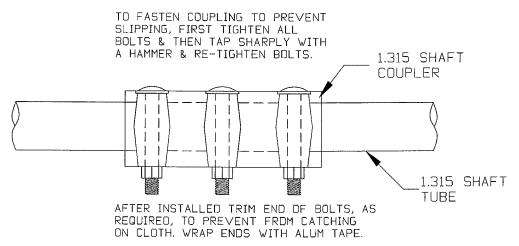




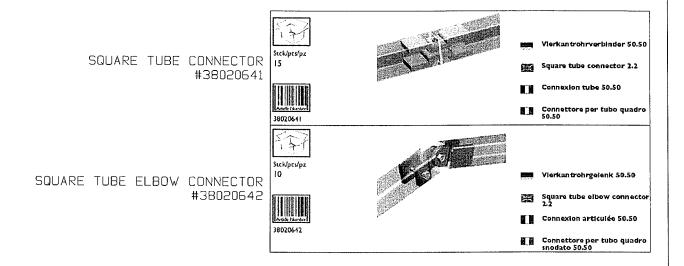
TUBE MOTOR BRACKET

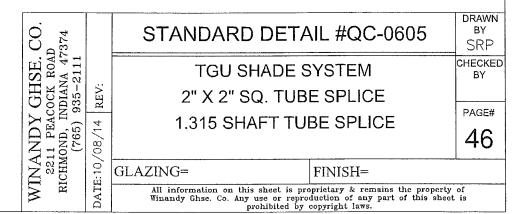


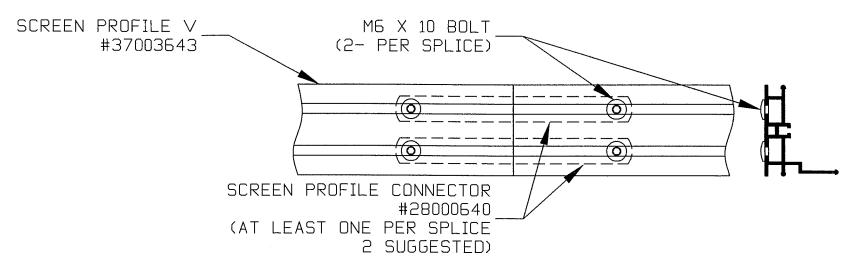

TUBE MOTOR TO SHAFT TUBE

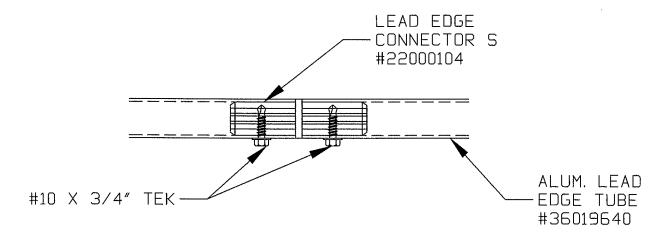


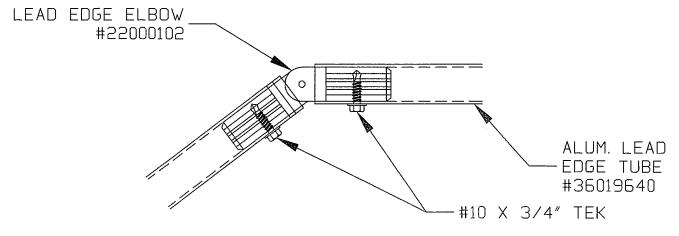
SQ. TUBE STRAIGHT SPLICE

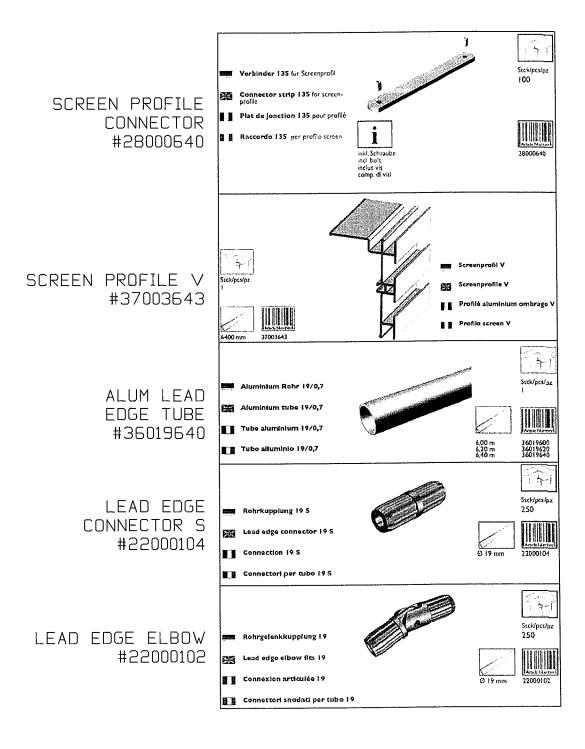


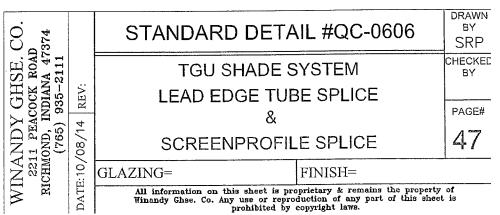


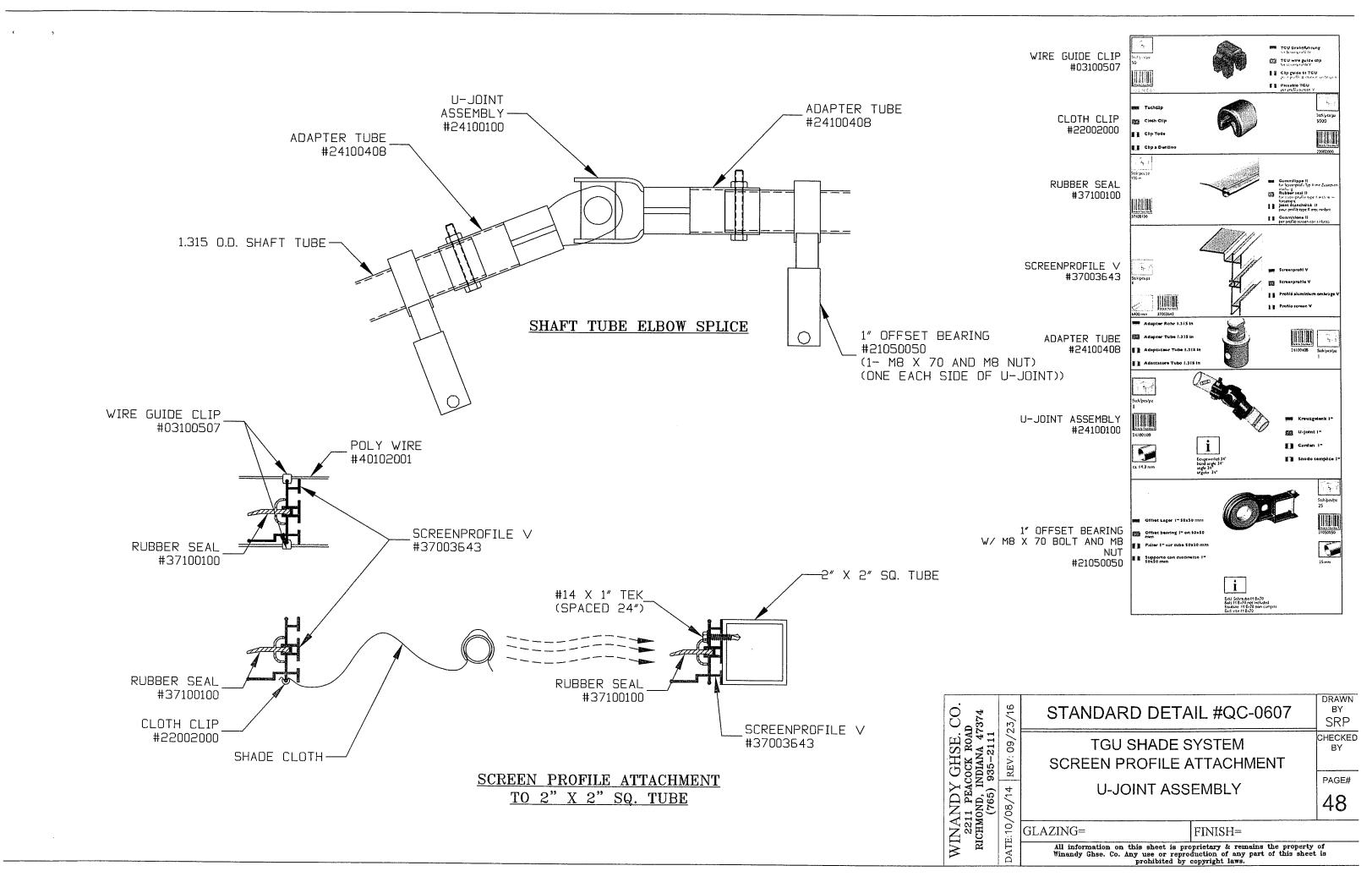

SQ. TUBE ELBOW SPLICE

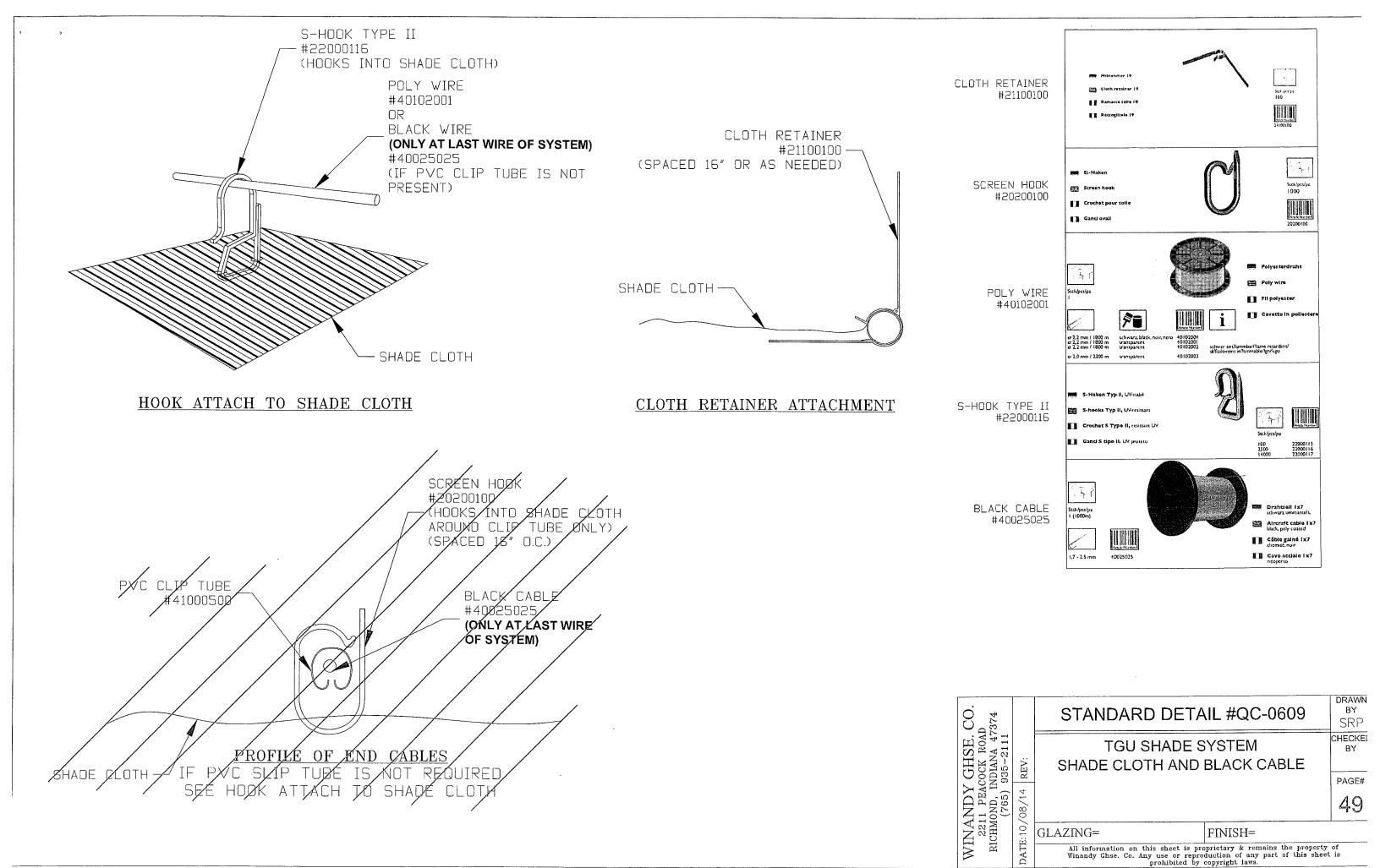

1.315 DRIVE SHAFT SPLICE



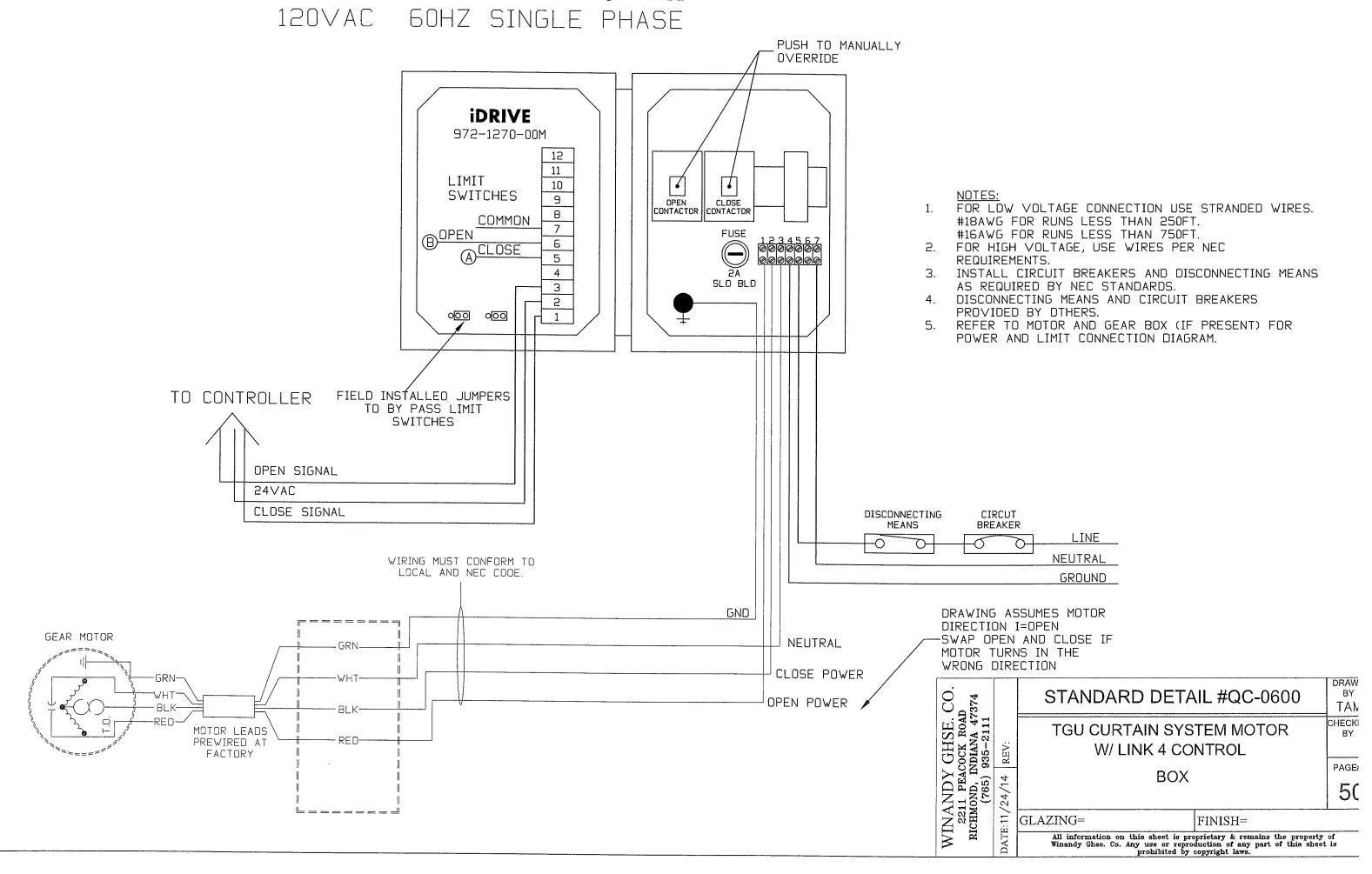

SCREEN PROFILE SPLICE

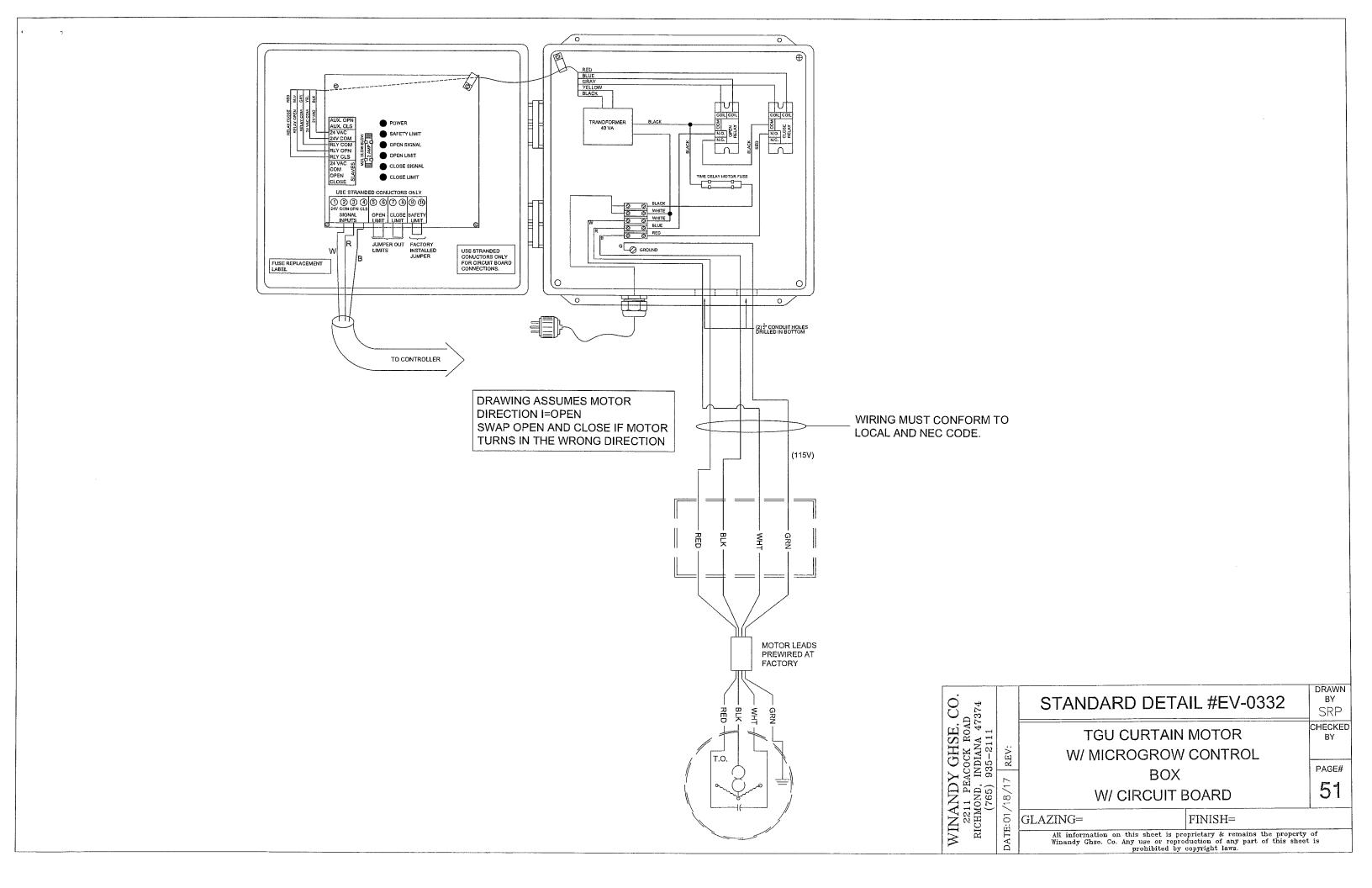


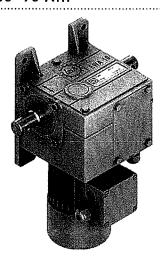

LEAD EDGE TUBE SHORT SPLICE



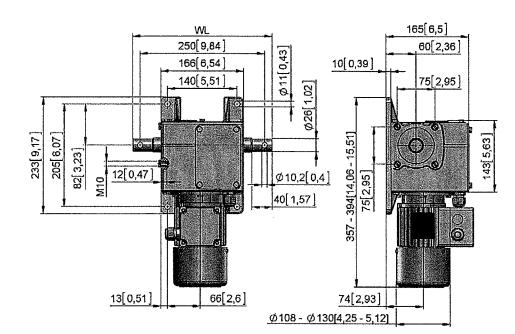
LEAD EDGE TUBE ELBOW SPLICE






IDRIVE MOTOR CONTROLLER

2014 | 06


EWA 10 // Power drive 50-90 Nm

- -> Extremely quiet, self-locking worm gear units with long service life, zero-maintenance.
- ightarrow Universal mounting with standard mounting at back or on side left (symmetrical).
- -> Installed precision END 20 gear limit switch for 580 shaft revolutions (UL+CSA).
- → Quality motors with multi-range voltage (IEC 38) for 50 Hz (400 V 3~ // 230 V 1~) and 60 Hz (208 V 3~ // 480 V 3~ as well as 120 V 1~ and 240 V 1~ in UL+CSA). IP55, Th.Cl.F, S3-40 %.
- ightarrow A coil protection contact is integrated in all single-phase motors, so no separate motor protection switch is required. Turnkey with cable.
- ightarrow Round shaft We 06, 90 Nm version also available with hex shaft We 66.
- → On 60 Hz versions, END 20.40 auxiliary limit switch as standard!

Options:

- → END 20.40 auxiliary limit switch.
- → PAR 06 position repeater.
- ightarrow Version A60 for use in the open air.

mm [inch]

O LOCK BEWEGT // LOCK MOVES

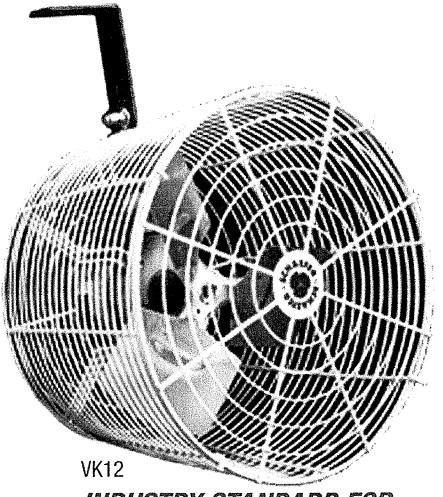
EWA 10 50-90 Nm

2014 | 06

WL 280 mm WL 385 mm

	W2064	VIE(47.3				and the second section of the section o	www.excreteracecommissionstrations (####################################	
Version	Турето	Туре по	T ING	0	P IkWi		m We 06 [kg]	m We 66
1.00				(Pfegal	11011		355	(100 SA 422 S 11 S
400 V 3~, 50 Hz								
EWA 10.0503	12210.0503.06	_ :	50	3,6	0,06	0,40	17,4	
EWA 10.0505	12210.0505.06	- .	50	5,6	0,11	0,45	16,0	-
EWA 10.0903	12210.0903.06	12210.0903.66	90	3,6	0,08	0,48	17,4	18,1
EWA 10.0905	12210.0905.06	12210.0905.66	90	5,6	0,13	0,53	16,0	16,7
230 V 1~, 50 Hz								
EWA 10.0503	12210.0503.0620	-	50	3,8	0,06	1,10	18,7	
EWA 10.0505	12210.0505.0620	_	50	5,2	0,10	1,80	16,5	
EWA 10.0903	12210.0903.0620	12210.0903.6620	90	3,8	0,09	1,20	18,7	19,4
EWA 10.0905	12210.0905.0620	12210,0905.6620	90	5,2	0,13	1,90	16,5	17,2
24 V DC, 50 Hz								
EWA 10,0505	12210,0505,0640	-	35	4,2	0,08	4,00	16,5	
	We 06							
Version	Type no.	T (Nm)	T In Ibl	u Jipmi	ĺk	el Wil	i jai	m We 06 ikgi
120 V 1~, 60 Hz, UL/CSA								

	We 06						PARTICULAR DESCRIPTION OF THE PARTY OF THE P
Version	Туре по:	i (Nm)	T lin-lbl	n [rom]	P IKWI	IAI	m We 06 [kg]
120 V 1~, 60 Hz	z, UL/CSA		#POOL (MADECAN SOURCE) STEEPING CONTROL (SOURCE SOURCE SOU				
EWA 10,0503	12210.0503.0631	50	450	4,6	0,09	2,40	18,6
EWA 10.0903	12210.0903.0631	90	800	4,6	0,13	2,60	18,6
240 V 1~, 60 H	z, UL/CSA						
EWA 10.0503	12210.0503.0636	50	450	4,6	0,09	1,28	21,5
EWA 10.0903	12210.0903.0636	90	800	4,6	0,13	1,42	21,5
208 V 3~, 60 H	z, UL/CSA						
EWA 10.0503	12210.0503.0611	50	450	4,6	0,06	0,90	17,3
EWA 10.0903	12210.0903.0611	90	800	4,6	0,09	1,00	17,3
480 V 3~, 60 H:	z, UL/CSA						
EWA 10.0503	12210.0503.0616	50	450	4,6	0,06	0,41	17,3
EWA 10,0903	12210.0903.0616	90	800	4,6	0,09	0,45	17,3

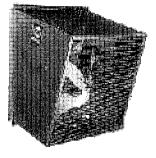


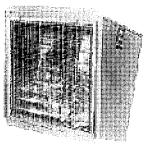
Versa-Kool® Deep Guard Circulation Fans

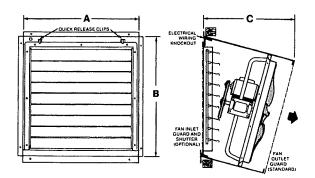
Reduce heat stress and improve air quality with Schaefer's deep guard circulation fans. Unrivaled in the industry, these fans are engineered to produce greater air movement and superior cooling with less noise. You don't hear them. You don't see them. You only feel them!

Features and Benefits

- Deep guard design for high airflow, low noise levels and safety
- Matched high quality motors and blades for maximum efficiency
- Powder coated steel guards for increased durability and corrosion resistance
- Hot dipped galvanized guards on VK12-GA and VK20-GA models for even greater rust protection
- Powder coated steel mounting bracket and power cord included
- Wide variety of mounting options available for flexible and easy installation
- Variable speed controls available
- Misting kits available for even greater cooling


INDUSTRY STANDARD FOR GREENHOUSE VENTILATION

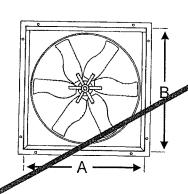

White Model	Diameter	Variable Speed	Phase	HP	Volts	Amps	CFM	Thrust (lbf)	RPM	Weight
	18"	 \		1/100	115	8.6	450	.19	1550	2
VK12	12"	Υ	1	1/10	115/230	1.3/.65	1470	.85	1725	18
VK12 GA*	12"	Y		1/10	115/230	1.9/.65	1470	.05	1725	İô
VK12TF SPM W	12"	, and the second second		1/10	115/200	1:0/:65	1510	.98	1725	18
WOO	20"	· ·		1/2	115/230	2.8/1.0	- 2479	4.26	1725	27

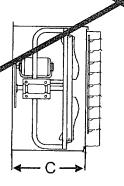

HODGE, WO SLAED WALL 程的場合時代

- Constructed of heavy gauge galvanized steel or aluminum.
- For Model DC, DCA, FQ and FN Fans.
- Energy Savings with inside shutter saves up to 3750 BTU/HR heat loss per fan.
- High Flow Capacity shutter directs air to fan. Select fan at .05" sp. instead of .10".
- Weather Protected slant arrangement protects motor and drives from elements.
- Outside Mounting keeps equipment from blocking aisles.
- Assembled to fan for quick, easy field installation.
- Includes 1" x ½" guard on outlet side.

- Shutter and inlet guard held in place with quick release
- Wiring knockout included to allow all wiring connections for motor to be made inside the building. For fan application, see pages 4 and 5 for Windmaster® (DC or DCA) and page 8 for DynaMaster® (FQ and FN).

AUTOMATIC INSIDE FRAMED WALL HOUSING ALUMINUM SHUTTER OPENING DIMENSIONS FAN SIZE MODEL WT. MODEL WT. MODEL WT. A В 53 WAA4545 25 WS42DC GS42 12 | 463/4" | 49"


CAUTION! Guards must be installed when fan is within reach of personnel or within seven (7) feet of working level or when deemed advisable for safety.


il wib square wall

- Constructed of heavy gauge galvanized steel.
- ⊖ For Model DC and
- to install fan and shutter. Provides convenient mea
- Outside Mounting keeps equipment from blocking aisles.
- Mounting Flanges for attaching to wa and to attach shutter.
- Assembled to fan for quick, easy field insta

FAN SIZE			AUTOMA ALUMIN SHUTTE	UM.	INLE GUAR		INSIDE FRAMO OPENING DILENSIONS		
	MODEL	WT.	MODEL	WT.	MODEL	WT.		В	С
24"	WB24DC	30	WAA2727	9	GD24	5	283/4"	283/4"	24"
30"	WB30DC	36	WAA3333	13	23 0	7	343/4"	343/4"	24"
36"	WB36DC	38	WAA3939		GD36	10	403/4"	403/4"	24"
42"	WB42DC	40	WAA454	25	GD42	12	463/4"	463/4"	24"
48"	WB48DC	70	VM 45454	35	GD48	15	543/4"	543/4"	25"
54"	WB54DC	90	WAA6060	40	GD54	18	603/4"	603/4"	29"

CAUTION! Cards must be installed when fan is within reach of personnel or (7) feet of working level or when deemed advisable for safety.

All Guards: for wall housings have 1" x " welding galvanized wire in aluminum frame for inlet side of wall housing. Outlet guards are ded on WS wall housings as standard

Injet quards unted with quick release clips.

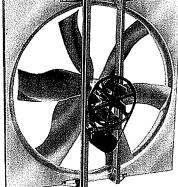
6

Super Windingster: FANS

DCA SERIES (ALUMINUM)

- All aluminum construction
- Six-bladed propeller utilizing a cambered twist blade design with a unique dihedral tip for higher air flow capacities at less horsepower
- Non-overloading design maintains horsepower within catalog range of static pressure, resulting in lower motor load and reduced operating costs.
- Streamlined orifice insures higher air flow capacity.
- Available mounted in either slant or square wall housing.

Acme Engineering and Manufacturing Corporation certifies that the Super Windmaster DCA as shown herein is licensed to bear the AMCA Seal. The ratings shown are based on tests and procedures performed in accordance with AMCA Publication 211 and comply with the requirements of the AMCA Certified Ratings Program.


SEALED BEARINGS

- Prelubricated oversize ball bearings are double sealed, require no service.
- Improved, more efficient drive assembly and super-duty neoprene belts provide longer service

ENERGY EFFICIENT ENCLOSED MOTORS

- Heavy duty totally enclosed motors with shielded ball bearings are designed for continuous work load.
- Available in two speed.
- Built-in thermal overload for low-line voltage protection on all single phase motors.

PATENT APPLIED FOR

MOTOR NOTES

- 1. All single speed single phase motors are dual voltage (115/230) except 1/4
- 2. All ¼ horsepower single phase motors are single voltage (115 or 230).
- Two-speed motors are single voltage (115 or 230) and not available in 11/2
- 4. Low speed capacity of two speed fans is approximately one half of
- 5. All three phase motors are triple voltage (200-230/460).

						CERTI		VS. STATIO	PRESSUR		S WG)		- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					MAX
FAN	HP.	RPM	CFM	.000" *BHP	CW	OFM	.050" *BHP	OW	OFFI	.100"	044	OFM	.125"	1 000	CFM	.150" *BHP	CW	PRESSU
		17:15:S1000	CFIM			CFM		C/W	CFM	*BHP	C/W	CFM	*BHP	CW	CFM		C/VV	1742550
	14	OLL Control	7000	A STATE OF THE PARTY OF THE PAR	10.0	1000		and the Contract	7100	,EU		6666						
						S See Vision Plants	ale y Adeles	no objective state	E- 400 0 0 00				200000000000000000000000000000000000000		avetosi deser		6-10	
			- C 100		Street Street	02.00		Constitution of	0000					and the same				a consider
01011				anto (Stellar	sare bringe				2000			2077	A Section	0.8186	2300	and Chara		-006
**************************************	i de la compansa de	970			sta-filest			and the same			and the same		THE PERSON NAMED IN		n Fred West	mav gygetti		our ga
		التناويون				and the state of	- engigence		-									
0400							and Com		سارة الأبس				rene l'étres			anni Orac		and E
G-1000 20	7	640	6400	an ideas	and the same	0,000		No.	1949			777				- Annielle Contract	2000	
				street (Same			man Library			والأنجاب		and Males						
	A PROPERTY.	Military of the last	10010	anni Alama	e likting propieto.	Service Company	annie Spine	ACCESSORY OF THE PERSON NAMED IN	OE OF		0,5	- CANADA		maral direct	Manager S	and Stone	AND DESCRIPTIONS	
0,100	73	707	10005	- OFFICE	1.0.0	36/3	1000	20.2	6060	.00	10.0	0000		Control of the same	966		710	THE PERSON NAMED IN
			ampliki yas	n destanting get												anescules, en	gaserinika car	and the second second
			10010	A STATE OF THE PARTY OF T		1	-,000,000			200		- Anna Parking	anata spiras	and a part of				
	Orași de Constantin		10010					antered Greature						en e		The State of the S		A Section
C 1000	No.		44000	002200								2000 P.100	ATT A BAST COST	and the same	264 (2 kg 4) 4) A	0.2142520.215	000000000000000000000000000000000000000	
	60 Tests							2000	200000000000000000000000000000000000000	****	10. T	niniana sa cataba	cks/2008ins-600	72.0	200	ancress and		
CARL SECTION	i de la composición dela composición de la composición de la composición de la composición dela composición de la composición de la composición dela composición dela composición de la composición de la composición de la composición dela composición de la composición dela composición dela composición dela composición dela composición dela composición dela composición del		10000			72.00		10000000									www.	170550.0
OTTEN S		oinges esta.	70710	30.05 m	20,5	1937	un en gygene		70100	nesigna.	SENTENCE OF THE PERSON NAMED IN		HATELE PARTY	and Giban				
	an spens	and Serious	and Charles			ectivity) (me	enadikan.			Carl Physics	nandali (ne		9-5-8-15-15-15-15-15-15-15-15-15-15-15-15-15-			e germalik kans		
CA42J‡	1	485	18295	1.11	17.1	17620	1.14	16,1	16980	1.19	14.8	16575	1.20	14.7	16125	1.20	14.0	.25
		NAME OF TAXABLE PARTY.								Post States			and the same			anarakihan	Part Print	
04460-00							MATERIAL SERVICE	Company Confession		az szálásza			and be		egeggenen belædet.		Na Paris Company	
					savalagaje na		ana Jakana		Carl FOCSUS									
										S) WWW.			siis oo Skiferidaa	and the same				
CA4001	OPERATOR S		21300	90	ZZ;	20140	1,01	21.0	19420	1.00	19.2	10050	1.00		10150	*************		
DUNS-10:		330	20010	7.10	Z.	25570	Anni Sidelini	**************************************	21320	and the second		20190	and the same	200	13000			

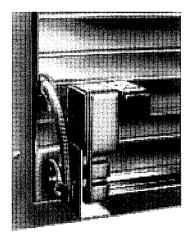
- Available with two-speed motor in 230/1 only.

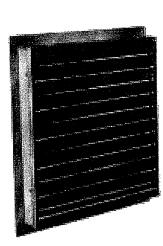
 Performance shown is installation of type A-Free inlet. Free outlet.
- Power ratings (BHP) does not include drive losses.
 Performance ratings do not include the effects of appurtenances in the airstream. † These models feature a four-bladed propeller
- CFM per Watt does not include drive losses. C/W ratings are not licensed to bear the AMCA seal.

WARNING! DO NOT use in HAZARDOUS ENVIRONMENTS where fan's electrical system could provide ignition to combustible or flammable materials unless unit is specifically built for hazardous environments.

CAUTION! Guards are strongly recommended when the fan is installed within seven (7) feet of the floor, working level or within reach of personnel. Guards complying with OSHA regulations are available as optional equipment . Review OSHA Codes and obtain a quotation.

BELT TIGHTENERS FOR DCA SERIES: Keep fan performance to the design level, maintaining

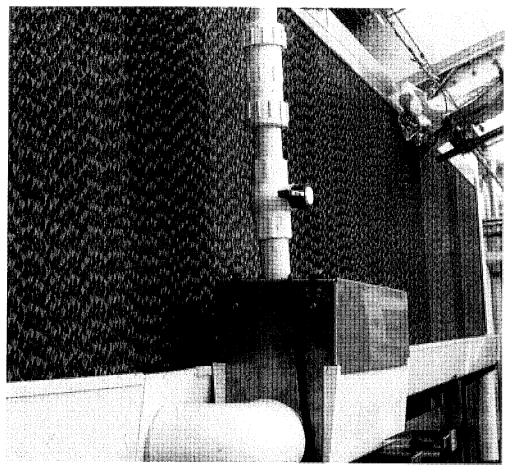

Not available for DCA24 and RCA24 models.

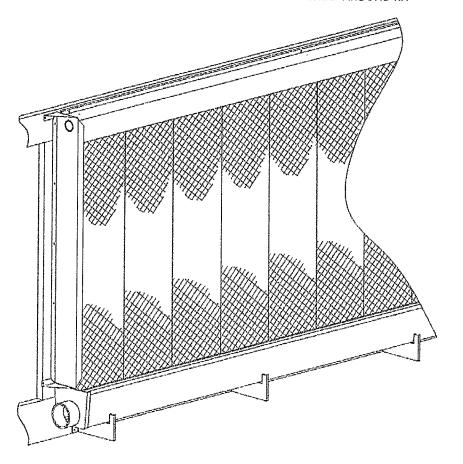

ACME ENGINEERING & MANUFACTURING CORP.

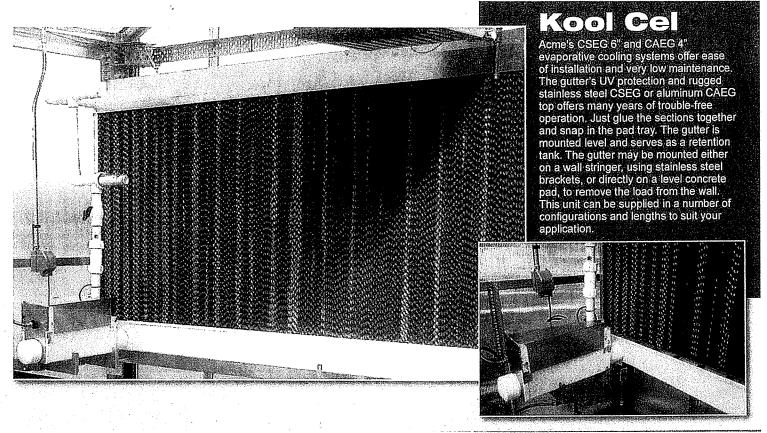
	R	

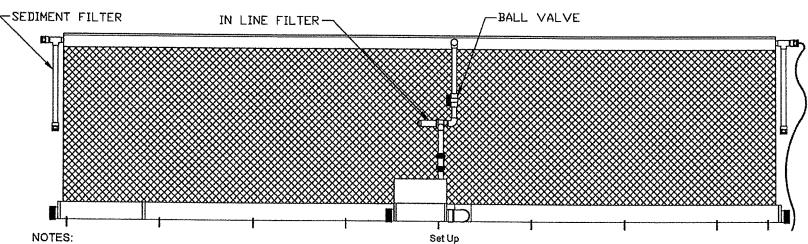
ALUMINUM WALL SHUTTERS

- ©Corrosion resistant heavy gauge aluminum frame.
- Precision counterbalanced aluminum blades open easier, wider to permit higher fan capacity.
- Nylon bearings throughout are corrosion proof to help prevent sticking. Suitable for dusty or humid applications.
- Stainless steel hinge pins will not rust, insure easy positive blade action.
- All shutter blades are reinforced with polished galvanized steel rods, and equipped with double tie-rods.
- Automatic Used with exhaust fans; opens automatically when fan is on, closes automatically when fan is off.
- Keeps out wind, rain and backdrafts when fan is not in operation.(See fan selection for shutter sizes)




MOTORIZED INLET SHUTTERS


- New cam pulley operator Provides long life to motor - corrosion resistant.
- Motor draws only 17 watts.
- •WAAC models are center pivoted to open easier against house static pressures.
- Motors are available in 24v, 115v, 230v, 460v, (Specify Voltage Required).


SHUTTER		DIMENS	DIMENSIONS					
MODEL	OVERALL	OPENING	Sq. Ft. OPENING	WT.				
- ₩/• •€1919MT	10,10	15,15	1.56	40				
₩₩₩₩₩	26x26	20x20	3.67	44				
-WAACCCCANT			6.25	48				
<u>-₩, </u>	40×40	27 _¥ 27	0,50	22				
WAAC6318MT	62v1e	£0x1 5	6.25	10				
-₩^.\00040MT		66,37	15.12	 				
₩AA06362MT	69.62		24.50	52				
WAAC6363MT	63x63	60x60	25.00	52				

ABOVE PICTURE SHOWING INLINE WRAP AROUND KIT

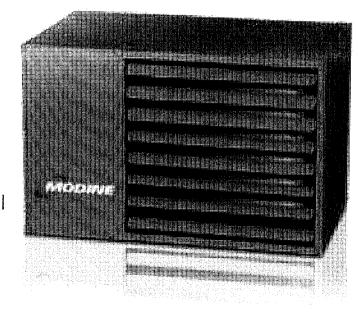


Installation

- 1. The pump tank must be mounted so that the top of the tank PVC is the same height as the top of the gutter.
- 2. All PVC joints must be cleaned with appropriate cleaner prior to gluing.
- 3. The ball valve should be located so that it can easily be adjusted by hand.
- 4. The compression coupling should be located to facilitate pump
- 5. Be sure that the bleed off pipe does not feed back into the system.

OPTIONAL TANK PLACEMENT IN CENTER OF SYSTEM

- 1. Check the water replenishment supply to assure that it is greater than the amount of water to be evaporated.
- 2. Set the float level to as low as possible while keeping the water level above the pump impeller chamber height.
- 3. Before initial seasonal start up or on initial start up, pre-charge the system with water until the water level is just below the pad bottom.
- Set the ball valve to 1/4 to 1/4 opening.
- 5. Turn on the pump for the initial start up.
- 6. Adjust the ball valve until the pads are just fully wetting. If access to the distribution pipe is available check that all holes are operating and that the water is sprayed approximately 1 foot above the distribution pipe.



BRING VALUE TO YOUR SPACE WITH THE NEW PTP HEATER.

PTP unit heaters can use natural or propane gas, and are available in single-stage or optional two-stage controls.

Introducing the new power vented, PTP unit heater line with stainless steel bent tube heat exchanger standard. The PTP was specifically designed with the customer in mind to provide high value at a reasonable cost. Backed by Modine's nearly 100 years of pioneering HVAC innovation, the horizontal mounted PTP delivers reliable performance and longer life in a small-business-friendly package.

Propeller Unit Model PTP General Performance Data

2									
		Model PTP Sizes							
		J	5	1	J	, D	300	: 1	4 1
BTU/Hr Input¹	15	000	17 000	200	00	25 000	300,000	35 00	40(00
BTU/Hr Output¹	12	00	14 000	160	00	20, 000	240,000	28 00	32(00
Max. Mounting Height (Ft.) ²							19		
Heat Throw (Ft.) (@ Max Mtg Ht) ²							69		

- ¹ Ratings shown are for elevations up to 2,000 ft. For elevations above 2,000 feet, ratings should be reduced at the rate of 4% for each 1,000 feet above sea level. (In Canada see rating plate.) Reduction of ratings requires use of a high altitude kit.
- ² Data taken at 55°F air temperature rise. At 65°F ambient and unit fired at full-rated input. Mounting height as measured from bottom of unit, and without deflector hoods.

BENEFITS OF THE PTP LINE INCLUDE:

- Stainless steel heat exchanger comes STANDARD on all units, extending the life of your investment
- 10-year heat exchanger warranty is STANDARD, providing you peace of mind
- Totally enclosed, permanentlylubricated fan motor outside the cabinet is standard for trouble-free dependability
- Constructed with Modine's proven tubular heat exchangers for a low-profile design on jobs with lower mounting heights

- Optional finger-proof fan guard for low mounting height applications
- Power exhauster and controls mounted inside the cabinet for protection from airborne moisture and dust
- Installs quickly and easily with knockouts and field gas and wiring connections inside a roomy controls section for quick and easy access
- Proudly Made in the USA

Aluminet® I Open Screens

	ខ្លាំស្រីខ្លែ មួយខេត្តការប្រើកំព	Dអូរណ៍រទិតប្រើក្នុងស្វើមួយ	ក្សាស្រ្តាស្រ្ត ដើម្បីប្រកួន គ្រប់ព្រឹក្ស
Aluminet® 40 I	40-43%	72%	15%
Aluminer® 50 I	49-53%	65%	20%
Aluminet® 60 I	62-64%	55%	36%
Aluminet® 70 I	70-74%	45%	45%

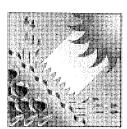
Aluminet® I Open Screens provide multiple solutions where both heat-stress reduction and frost protection is necessary. The double-sided reflection screen helps to protect your crop against both midday heat stress and overnight frost.

Light transmission parameters were tested according to ASTM-D 1746 & ASTM-D 1494 methods.

Aluminet® IC Closed Screens for Energy-Saving

Energy Saving Diffused light transmission Shade percentage Aluminet® IC TS 22-24% Aluminet® IC 50 55% 74-75% 46-48% Aluminet® IC 60 60-61% Aluminet® IC 70 45-46% 73-75% Atuminer® IC 100 98-99.5%

Aluminet® IC is highly recommended for greenhouses where a high level of energy saving is essential. Tests show that Aluminet's insulation properties contribute significantly to reduced energy consumption.


Energy savings tested by the INTRON Quality Assessment Institute in Test no. R20010307 on Nov. 8, 2001. Light transmission parameters were tested according to ASTM-D 1746 & ASTM-D 1494 methods. Fire retardant parameters were tested according to NFPA 701 regulations.

OREENS

WHY SHOULD YOU CONSIDER INSTALLATION OF ALUMINET® SCREENS?

Saves energy

Aluminet® screens have been tested and proved to save over 50% of heating energy, which means direct reduction of your operational costs.

Increases vields

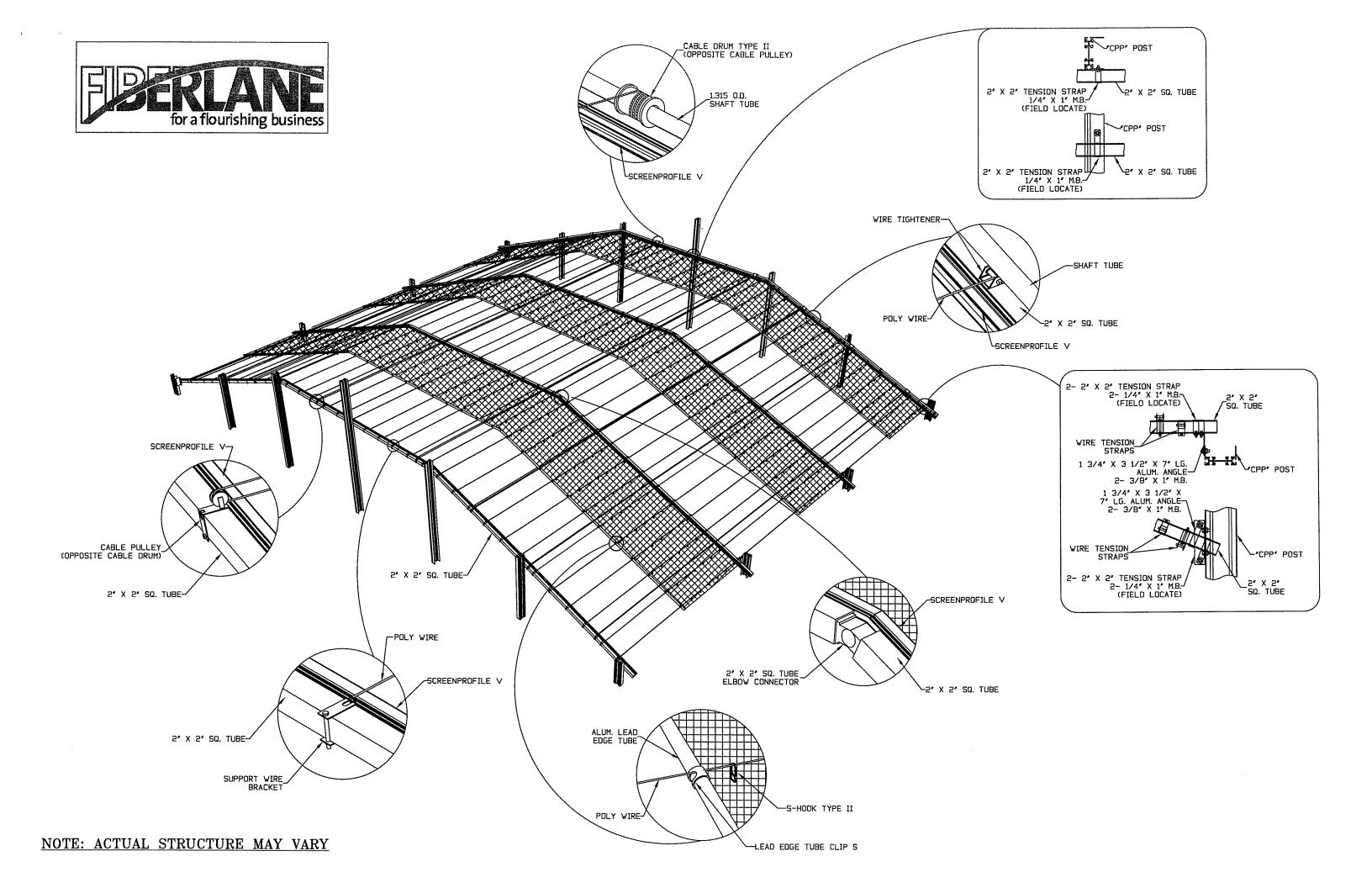
Better temperature control, together with optimized light management, ensure maximum yield from your greenhouse. Aluminet® screens raise plant temperatures at night, avoid overheating in the day and improve photosynthesis by increasing the amount of scattered light.

Protects against frost

Many outdoor crops benefit from improved climate management. Aluminet® screens installed on light-frame shade houses protect crops from frost, wind and heat stress, increasing both crop quality and productivity.

Warranty

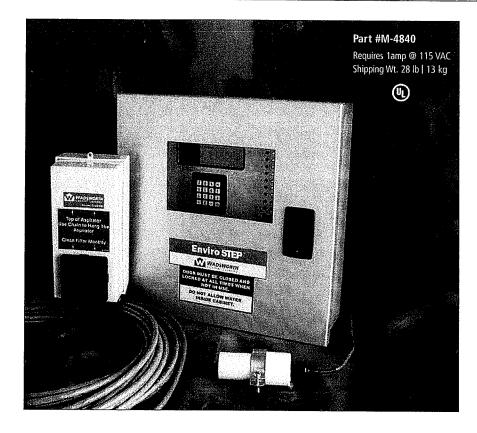
Aluminet® screens carry a long-term guarantee on product quality. The company's quality assurance policy focuses on supply of quality products to its customers - for long-term use - under harsh and diverse field conditions. All the company's activities are conducted under $\ensuremath{\mathsf{ISO}}$ 9001 and IQNet standards.


HOW DOES IT WORK?

Double-side reflection

Aluminet® screens reflect sun radiation during the day, reducing overexposure to heat, and reflect IR radiation at night, increasing plant temperature and reducing risk of freezing. The screens also prevent condensation on leaves.

Light Diffusion


Aluminet's special structure improves light management. The use of special additives and the multifaceted reflection of the twisted Aluminet® strips contribute to efficient diffusion of incoming radiation, creating uniform light throughout the greenhouse.

Integrated STEPTM Controls

EnviroSTEP™

Each year hundreds of growers install EnviroSTEP controls in their greenhouses. It's the flexible, rugged choice to integrate the climate control equipment for one zone. There's no better combination of power and value than the EnviroSTEP. Garden centers, production growers, laboratories and schools all benefit from this control. And it bears the UL mark, your assurance of regulatory approval.

Features:

- Single zone control
- 3 set point periods day, night and DIF
- 12 relay outputs with manual override switches
- 2 analog outputs (0 to 10VDC) to control variable-speed fans and modulating valves
- 7 analog input channels for connecting light, CO₂, RH and temperature sensors
- 4 digital detector channels sense precipitation, wind speed and direction
- ₱ Records the status of all inputs and outputs in 15-minute increments
- Alarm outputs: temperature, RH and power failure
- Replaceable 10 amp DPDT relays, can operate a wide variety of equipment — these relays reduce the cost of your contactor panel

- Durable corrosion-resistant cabinet with locking door protects your control
- Cabinet measures 16" x 16" x 5"
- Largest display in the industry; has menu-driven choices and graphic functions
- Keypad for easy operation
- Ramping allows for gentle transition between set point periods and saves fuel

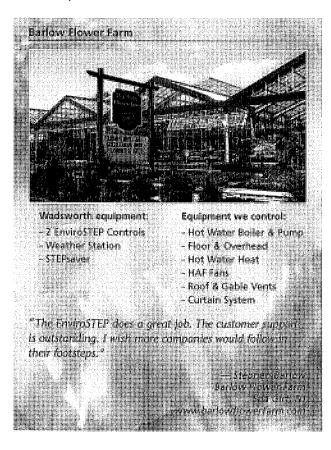
Includes:

- Solar-guarded aspirated temperature and humidity sensor and 100' of cable
- ☐ Solar-shielded outdoor temperature sensor with 25' of cable

Integrated STEPTM Controls

Maintaining the Climate for Growth

Our EnviroSTEP and VersiSTEP integrated controls monitor and manage all aspects of climate: temperature, humidity, light level, CO₂ and watering.


Unlike staged STEP controls that group several pieces of equipment into stages, integrated controls allow each piece of equipment to have it's own parameters. These advanced controls offer more precise control. Now more than ever, the Wadsworth STEP brand name is your key to a Simple Total Environmental Program.

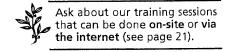
Advantages to using integrated controls:

Easy to Use

8

- Your integrated control is plug-n-play; all you need to do
 is connect it
- Although our settings are optimized for the typical greenhouse, customizing your control is simple
- Your shipment includes an instructional DVD
- Largest screen in the industry includes graphic capabilities
- Interface panel is easy to use simply push the button to select the desired option from the menu and press the GO key

Enhances Crop Quality


- Provides uniform growing conditions
- Multiple set point capability mimics nature, improves crop quality and hardiness
- Increased precision in monitoring and equipment control, each piece of equipment has its own parameters
- Highly accurate temperature and humidity control

Reduces Fuel Costs

- Maximizes energy management
- Reduce energy consumption by lowering night temperatures, this is when 80% of the heating occurs
- Ramping allows for a gentle transition between set point periods
- Solar-guarded, aspirated temperature and humidity sensors provide excellent accuracy. This counts in real-world terms; consider that for every one degree of improved accuracy, your energy consumption is reduced by 3%

Increases Productivity

- Automation allows you and your staff to focus on other aspects of running your business, such as growing plants and growing sales
- The EnviroSTEP or VersiSTEP are a great addition to your team. Your control works 24/7, with no complaints, and it will do exactly what you tell it to do. Talk about good management/labor relations!
- Add STEPsaver software (see page 14) to save even more on labor costs

10

Integrated Controls - Sensors

Computer Weather Station

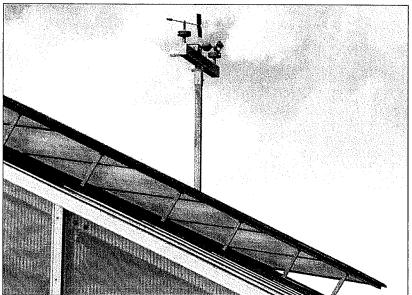
Temperature

■ Precipitation

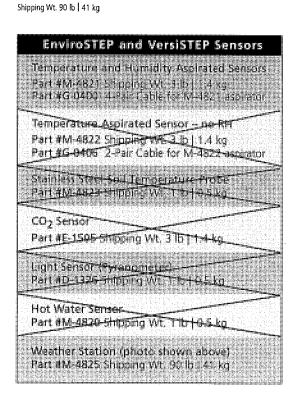
■ Light intensity

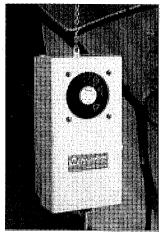
■ Accumulated light

■ Humidity


Wadsworth's Weather Station monitors

the following outdoor weather conditions:


■ Wind speed and direction


Optimize the power of EnviroSTEP and VersiSTEP

Wadsworth sensors increase the power of your integrated STEP controls. By using additional sensors, your control can make anticipatory decisions for optimum control. Visit our website at www.WadsworthControls.com to learn more about how sensors add power to your integrated controls.

Part #M-4825

Sensors

Wadsworth's sensors provide accurate temperature and humidity readings. Housed in a solar-guarded, aspirated unit. A fan draws air across the sensors providing an accurate ambient temperature reading rather than an incorrect reading due to direct sunlight exposure.

For every 1° of improved accuracy you reduce energy consumption by 3%.

"The sensors inside and outside the greenhouse help us to maintain the perfect soil moisture."

> — Peter Thaman-Bigsby Texas Floral Azle, TX

Integrated Controls - Software

STEPsaver™ Software

Add the convenience of your PC to the power of your environmental control. STEPsaver provides a single view of all of your greenhouse zones. Allows you to monitor and make changes from your PC or via the internet. It provides advanced data logging and analysis tools to help you manage your crop.

STEPsaver as a Productivity Tool

- View conditions for the entire greenhouse range at a glance. For greenhouses with many zones or acres, STEPsaver is a step saver
- All features accessible with pointand-click menus and buttons
- Allows you to see and change the settings for any controller in any zone
- Not limited to a single PC. No extra charge for sites with a Local Area Network
- Oversee the greenhouse climate. no matter where you are
- STEPsaver Imaging takes a snapshot of all settings so you can replicate previous success
- Instructional DVD included

"Data from the STEPsaver

logging feature helped us

achieve the lowest possible

night temps while running

fans. This is critical in the

Texas summer heat so we

can avoid heat delay on

—Jimmy Klepac

Blanco, TX

Klepac Greenhouses

our mums."

the fewest amount of exhaust

STEPsaver as an Analysis Tool

Editerita Brt Back

STEPsaver as Your Watchdog

controls for alarm reports

text your cell phone or PDA

other alarm monitoring system

- STEPsaver expands the graphing power of your Wadsworth STEP control
- Analyze temperature with equipment use
 - Compare data between zones
 - Filter data to pinpoint every data entry, or broaden your view to a few points that represent hours or a whole day. Spot long-term trends by hiding detail
 - Create custom views of your data that combine sensor readings, equipment use and weather
 - Dynamic, quick, and easily done with a few mouse clicks

ALTA

BO | Sampy | Bown | | 〇月月日

STEPsaver as a **Management Tool**

- Transfer and store data from your greenhouse control
- Use STEPsaver's built-in reporting tools to summarize stored data. Know how many hours your fans or heaters ran. Confirm Learn the average temperature and humidity for day, night and DIF
- Manage access to settings with user names and passwords
- with user name and password protection

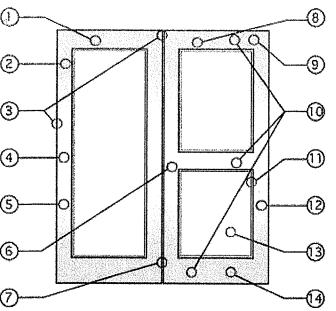
- that systems ran as you expected.
- Access STEPsaver over the internet,

Part #M-4900 Shipping Wt. 2 lb | 1 kg

■ STEPsaver constantly monitors your Wadsworth STEP

■ Pop-up window on your desktop PC alerts you to trouble

Makes an ideal complement to your Alarm Manager or

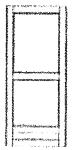

■ With your permission, STEPsaver reports to e-mail, or it will

System Requirements

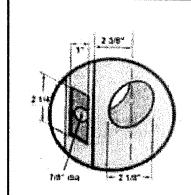
- Windows Operating System: 2000 or XP
- 500 MB available hard disk space
- STEPsaver works with: EnviroSTEP, VersiSTEP, STEP Up and post '95 microSTEP controls
- Upgrades available for pre '95 microSTEPs

14

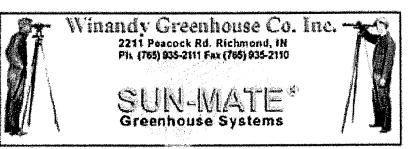
- 1. Available 6-1/2" Head Rail for Closer Mount without Using Drop Plates
- 2. 4-1/2" Stiles Width
- 3. .187" Edge Wall Thickness on Lock and Hinge Stiles
- 4. Nominal .125" Door Face Thickness
- 5. Tubular Aluminum Extrusion Construction
- 6. Flexible Design for Multiple Hardware Applications
- 7. Durable Woolpile Weatherstrip with fin strip for Positive Weather Protection
- 8. Rail Face Thickness is 3/16" to avoid through bolting closers
- 9. True Mortise and Tenon Construction at Every Stile and Rail Intersection (Standard) No Messy Welding Involved
- 10. Number, Size, and Location of Horizontal Rails are Very Flexible (Adaptable to Meet ADA Regulations)
- 11. Screw Applied Interior Glazing Stops for Easy Glass Replacement
- 12. 1-3/4" Overall Door Thickness
- 13. Accepts 1/4" up to 1-1/4"
- 14. Available in Fluted/Smooth Face, Kynar/Dunar Paint and Anodized Finishes


The same quality and structural integrity that is engineered into our flush door line, is carried over into our stile & rail glass door (storefront entrances). The vertical stiles of the MS-400 series are tubular extrusions that are 4 inches wide. This allows for usage of most commercial hardware. There are a wide variety of glass configurations that can be created, from full view glass to various horizontal and vertical mullion assemblies. These custom variables allow for the creation of many unique entrance designs. Entrances that are required to meet the American Disabilities Act (ADA) are easily fabricated. The base and top horizontal rails of the doors can vary from 4-1/2" to any desired height. Other structural points of emphasis are:

- Door sections are 1-3/4" x 4-1/2" tubular shapes of extruded aluminum 6063-T5 alloy.
- True Mortise and Tenon Joinery at every Stile and Rail Intersection.
- Joinery is 3/8" diameter zinc plated steel tie rods bolted through the stiles. Where applicable, a minimum of three rods will be installed in each door.
- Wall thickness of the extrusion stile face is .125" nominal. While the end wall thickness at the hinge and lock stiles are .187".
- Meeting stile of all pair of doors have wool pile weather stripping w/ fin strip.
- Glass glazing stops are extruded channels with minimum wall thickness of .125" and are removable only from the inside.
- · All exterior glazing is part of the door extrusions and non-removable.
- . The glazing stops will always match the finish of the door.
- ▶ The doors accept glass from 1/4" up to 1-1/4" thickness.
- . Accept hardware of any type and manufacturer as required.
- Available in a variety of anodized and painted colors.


Cross Aluminum's MS-400 series doors are fabricated with a true mortise and tenon joinery. The rails are composed of a spline composition which encompasses the entire Tie-Rod through the full width of the horizontal rail. This construction process provides maximum strength without the use of a welded joint. Utilizing this method allows the owner the option to replace any piece of the door that may be damaged by abuse or accident. This can be done by disassembling the door and purchasing a replacement part, rather than having to spend hundreds of dollars to purchase a completely new door.

1/2 Glass door with midrail and aluminum panel below


Full Glass door with out mid rail

NOTE: ALL Standard Winandy Greenhouse Doors come Prep'd with Standard GOV160 Lock Preperation-2 1/8" dia hole with a 2 3/8" backset.

GROSS ALUMINUM

Standard Medium Stile and Rail Glass Door Entrances

Note:

All Standard Winandy Greenhouse Doors are provided with a Heavy Duty Full Mortise continuous gear hinge.

Innovation, Quality, Customer Service

MATERIAL: EXTRUDED 6063-T6 ALUMINUM ALLOY WITH

POLYACETAL THRUST BEARINGS

COLOR: 30 MINUTE CLEAR ANODIZED AND 2-STEP DARK

BRONZE ANODIZED

CUSTOM HOLE LOCATIONS: HOLE SIZES & LOCATIONS PER CUSTOMER

SPECIFICATIONS.

DOOR TYPE FOR 1-3/4" DOORS, STANDARD / HEAVY DUTY TO

450 LBS. LEAD-LINES TO 1000 LBS.

DOOR REINFORCEMENT: NONE REQUIRED

FRAME REINFORCEMENT: OVER 200 LBS. REINFORCE WITH 16 GA. CHANNEL

SPECIAL FEATURES: LEAD LINES MODEL FOR HOSPITAL X-RAY ROOM.

DOUBLE ROW SCREWS TO STRADDLE LEAD.

HINGE KING: TEMPLATED AND HOLE PATTERN IS THE SAME

FROM HINGE TO HINGE

HANDING: HINGE IS NON-HANDED UNLESS CUT IN THE FIELD.

FIRE RATING: UL LISTED FOR 90 MINUTE RATED DOORS.

UL LISTED FOR UP TO 3 HOUR RATED DOORS WITH USE OF A STEEL STUD.

SCREW DETAIL: 12-24 x 11/16" PH. F.H. UNDERCUT SELF DRILLING

THREAD FORMING TEK SCREW

SPECIFICATIONS

APPLICATIONS

For offices, schools, hospitals, aparlments, hotel/motel, residential, commercial and public buildings.

DOOR RANGES

1 %" to 1 %" thickness doors.

BACKSET

2 3/4" Standard, 2 3/4", 3 3/4" and 5" optional.

LATCH FACEPLATE

2 1/4" x 1 1/4", adjustable for flat or beveled doors 1/4" in 2", for 2 3/4" backset Optional 214" x 1" for 2 %" backset.

LATCHBOLT

1/2" Throw solid brass, reversible for RH or LH applications UL Listed.

ANSI STANDARDS

Meets or exceeds requirements of BHMA/ANSI A156.2 Series 4000. Grade 2 (FF-H 106C), 400,000 cycles.

EXPOSED TRIM

Wrought brass, bronze or stainless steel, levers are Zinc casting, plated to malch trim finish.

KEYING

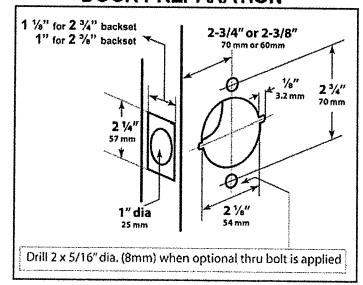
6-pin "C" keyway cylinder, 2 keys per lock. Keying as per individual job requirement.

CYLINDER & KEYWAYS

6 pin solid brass "C" keyway standard. Schlage E, Schlage C-K, Russwin D1-2-3-4 Corbin 59/60, Corbin-Russwin L4, Sargent LA-LB-LC, Falcon/Weiser E, Arrow A. Yale 8, Yale GA and Kwikset. Can also accept Medeco, Assa, Kaba and Cal-Royal (HSK) High Security Cylinders.

CLUTCH

Clutch available on all keyed locks and privacy functions. Prefic "C" before part


Tactile & Lead Lining available upon request.

INTERCHANGEABLE CORE

Interchangeable Core locks will accept compatible 6 or 7 pin cores with BEST. FALCON and ARROW. Prefix "IC" before part number. Available combinated or uncombinated Temporary construction cores available. Factory keying with control key and masterkey available.

STRIKES: ASA strike standard, "T" and full lip strike available on request.

DOOR PREPARATION

CAL-ROYAL

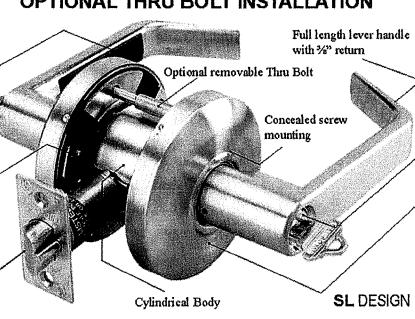
SL/CSL SERIES **ANSI GRADE 2 HEAVY DUTY** CYLINDRICAL LEVERSETS

Available with Interchangeable Core

The Buy American Act

Meets ADA requirements
Specially designed for Barrier Free Application Conforms with ANSI A156.2 Series 4000, Grade 2 Exceeds 400,000 eveles

Optional tactile warning meets handicap and fire code

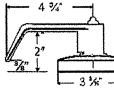

Push in and turn button function

Coil compression springs provide great strength and durability

UL LISTED 3 HOUR RATED 1/2" Throw deadlatch completely reversible for flat & beveled doors

PIONEER

SL SERIES (NON CLUTCH MECHANISM) CSL SERIES (CLUTCH MECHANISM) OPTIONAL THRU BOLT INSTALLATION



3 HOUR FIRE RATI UL 10C, UBC 7-2-11

Lifetime Warrant

Solid brass 6 pin "C" keyway cylinder. Ava with Interchangeable

Individual spring on side to prevent lever maintain reliability a reduce maintenance

WINANDY GREENHOUSE COMPANY, INC.

Greenhouse Manufacturers, Builders and Heating Engineers

New

"SUN-MATE"

ReNew

Phone (765) 935-2111

RICHMOND, INDIANA 47374 2211 PEACOCK ROAD SINCE 1919

Fax (765) 935-2110

STRUCTURED PLASTIC PANEL SUPPLEMENT TO ERECTION INSTRUCTION FOR WINANDY "SUN-MATE" INTEGRATED GLAZED ENCLOSURES

- 1) Almost all of the information and instructions for the erection of the "Sun-Mate" tempered glass greenhouse will apply to the Winandy "Sun-Mate" structured plastic panel glazed greenhouse except for the following changes.
- 2) The "Sun-Mate" structured plastic panel glazed greenhouse will either have polycarbonate structured plastic panels or acrylic panels.
- 3) The spacing in the roof and wall rafter spacing will be the same for the structured plastic panel glazed greenhouse as the "Sun-Mate" greenhouse that receives 36" wide tempered safety glass. If your "Sun-Mate" greenhouse is to be glazed with acrylic panels, the rafter spacing on the roof and walls will be at 48" center to center.
- 4) The plan will show the rafter spacings in multiples of 36 3/4" or 12'-3" bays or 24'-6" manufacturing modules. You will know the plastic panel is to be General Electric Lexan or other manufacturer's polycarbonate panels in 6'-0 3/4" widths.
- 5) Roof rafters on the "Sun-Mate" polycarbonate panel glazed roof are different than tempered glass. Refer to your extrusions chart. You will see PBL is designed for receiving structured plastic panels. It will be spaced at every other 36 3/4" hole or spacing lengthwise of the greenhouse to receive the outside edge bed and seal the 6'-0 3/4" wide structured plastic panel. Refer to the extrusion chart for the BD rafter. These rafters will be installed to be in the middle as the mid-panel support for the 6'-0 3/4" wide polycarbonate panels. BD rafters are the correct height to give mid-panel support as indicated on Standard Detail PR-0100.
- 6) Exterior side and end walls where the polycarbonate panels are to be used have a rafter spacing of 6'-1 1/2" and use the polycarbonate panel width of 6'-0 3/4". Refer to your extrusion chart for your PVB rafter and PGC plastic glass cap. These members are normally used on side and end walls. The polycarbonate panels are the normal plastic panels used on a wall. Refer to Standard Detail PC 0050, cross section of structured plastic panels when used on an end wall. This drawing illustrates how to use the PVB rafter, PG Cap, and shows how all are secured to the end frame. Side walls are installed in a similar manner.
- 7) All of the 6'-0 3/4" wide structured plastic panels must be secured with 1 #12 X 1 1/2" TEK with sealer washer placed mid-way of the 6'-0 3/4" plastic panels on exterior end and side walls

[&]quot;An amount equal to any tax or other governmental charge upon the production, sale, occupation of selling, shipment or use of material which is now or may be hereafter imposed by Federal, State or Municipal authorities upon either the purchaser or the Winandy Greenhouse Company, Inc., which the Winandy Greenhouse Company, Inc. is obliged to pay or collect, shall be added to the price and shall be paid by the Purchaser."

SERVICE

SPEED

SATISFACTION

WINANDY GREENHOUSE COMPANY, INC.

Greenhouse Manufacturers, Builders and Heating Engineers

New

"SUN-MATE"

ReNew

Phone (765) 935-2111

RICHMOND, INDIANA 47374 2211 PEACOCK ROAD SINCE 1919

(765) 935-2110

Tool List for Installation

The following list is the minimum tools that you should have on-site to facilitate rapid installation of the greenhouse:

- 2 Wrench sets, open end or combination wrench including 3/8", 7/16", 1/2", 9/16", 5/8", 3/4" sizes.
- 2 Socket sets with ratchet including the above sizes.
- 2 Battery power drill drivers capable of running tek screws with tek screws bits of 5/16", 3/8".
- 1 or 2 Battery powered impact wrenches or adaptors for your battery drill drivers to facilitate the rapid tightening of 3/8" bolts on the trusses.
- 1 4' 0'' level
- 1 Laser level or Builder's Level
- 12-16-2" x 4" x 10'-0" or 12'-0" with stakes and clamps to clamp off brace the post with padding to pad the clamps and boards to the posts w/ stakes
- Various ladders, scissor lifts, or Painter's scaffolds high enough to reach the peak of the building and the sides
- Padded rigging to raise the frames into place
- 2 caulking guns
- 1 pop rivet gun
- Aluminum cutting miter box saw & hack saw
- Sheet metal shears
- Cords & GFI plug
- Corded screw gun for teks
- Circular saw w/ plywood blade battery or corded for trim in panels
- Something to raise trusses into place.
- Carpenter Square
- Small cable cutters or bolt cutters
- Guide ropes for trusses
- 19' Scissor Lift
- Scaffolding (Recommended but not required)
- Drill bits for Steel and Aluminum: 1/8", 9/64", 3/16", 1/4", 9/32", 5/16", 3/8", 13/32", 1/2"; (1/8" pop rivets, 1/4" bolts, 5/16" bolts, 3/8" bolts, & 1/2" bolts)

This is the minimum list that you should have on the jobsite. I would recommend more lumber bracing rather than less and extra tools, so that you have plenty of tools to work rapid, especially in the battery powered drill driver etc.

[&]quot;An amount equal to any tax or other governmental charge upon the production, sale, occupation of selling, shipment or use of material which is now or may be hereafter imposed by Federal, State or Municipal authorities upon either the purchaser or the Winandy Greenhouse Company, Inc., which the Winandy Greenhouse Company, Inc. is obliged to pay or collect, shall be added to the price and shall be paid by the Purchaser."

WINANDY GREENHOUSE COMPANY, INC.

Greenhouse Manufacturers, Builders and Heating Engineers

New

"SUN-MATE"

ReNew

Phone (765) 935-2111

RICHMOND, INDIANA 47374 2211 PEACOCK ROAD SINCE 1919

Fax (765) 935-2110

TGU Curtain Installation Sequence

The curtain system has primary priority in its travel plane area above and below.

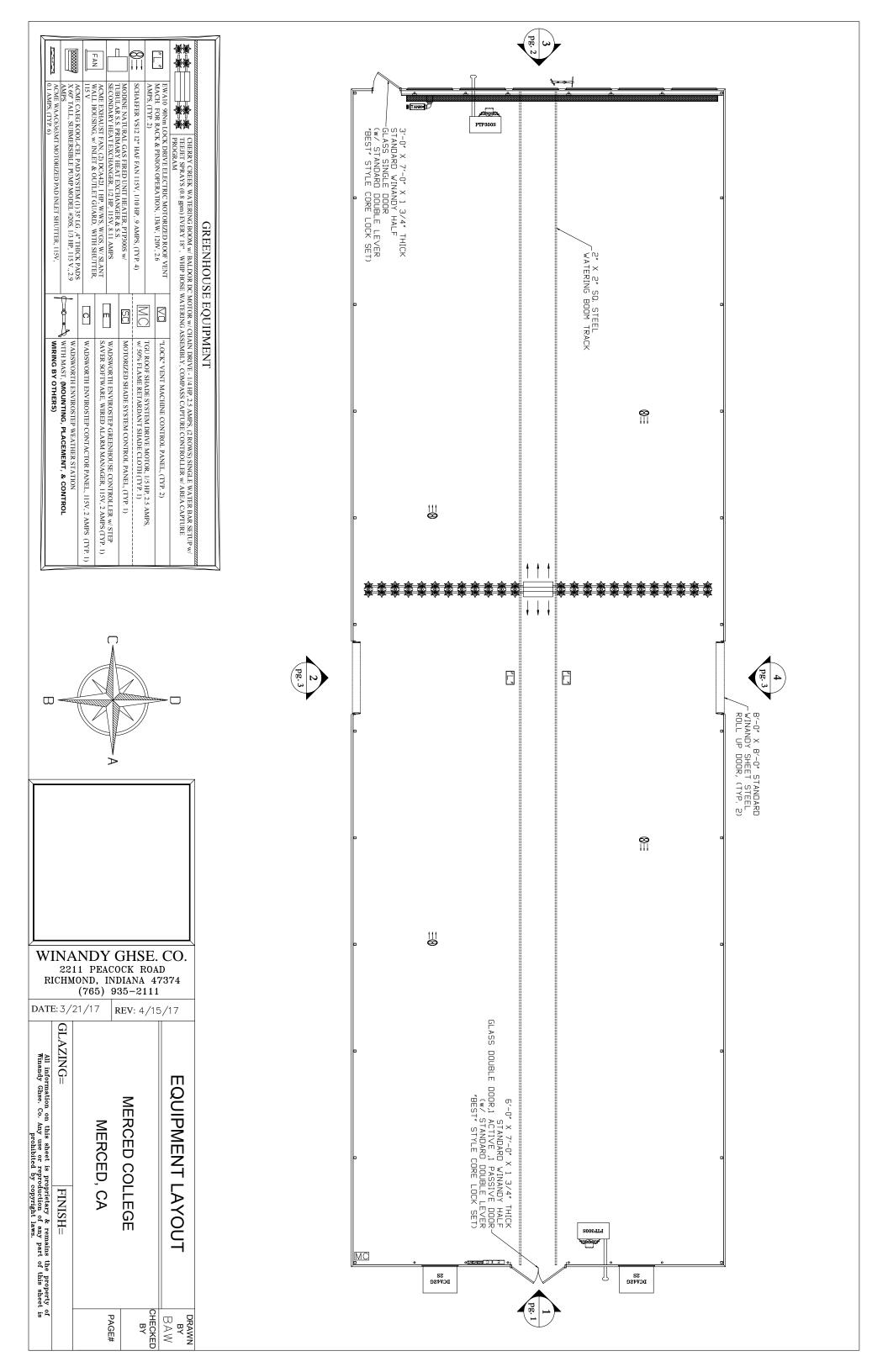
- 1) Determine location for 2" X 2" square tube at each end of the area to be covered. Choose a location free of obstructions for the system to travel. Be sure to take into account the system needs to be above heaters, grow lights, and overhead watering yet be out of the way of vent operators etc. Look at suggested location on enclosed drawings.
- 2) Install 2" X 2" square tube securely by bolting it to the structure and taking care to install bolts in alignment. *QC-0608*
- 3) Install drive shaft on to 2" X 2" square tube on end best for drive. Tube motor at one end with shaft supported by evenly spaced offset bearings. QC-0604, QC-0611
- 4) Install cable drums on to drive shaft tube one close to each end at a location to allow clear transit of drive cable across the length of the system. Then install the rest of cable drum(s) locating them where the drive cable(s) will have clear transit. *QC-0611*, *QC-0602*
- 5) Install wire tighteners on to 2" X 2" square tube on 16"± center with wire to be on the bottom of the 2" X 2" square tube. QC-0603
- 6) Install a minimum of 4 wire tighteners for wires to be on top of 2" X 2" square tube to suspend cloth in alignment. One at each end plus one at each change of plane for the 2" X 2" square tube. *QC-0603*
- 7) Install wire support brackets on opposite 2" X 2" square tube aligned with wire tighteners. *QC-0603*
- 8) Install rubber seal onto screen profiles as shown. *QC-0607*
- 9) Install screen profiles on to 2" X 2" square tube installed on gables. QC-0607
- 10) Install screen profile(s) onto intermediate bay structure as shown take care to maintain alignment with ends. *TGU TRUSS ATTACHMENT*
- 11) Install vinyl coated cable at ends on the top of the 2" X 2" square tube and install "clip tube PVC" if required. *QC-0609*

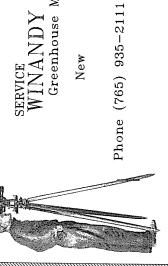
Page 2 / TGU Curtain Installation Sequence

- 12) Install poly wires above and below screen profiles tightening only enough to remove sag. Fastening at support brackets with "lead edge tube clip "L" and/or "S". *QC-0603*
- 13) Run drive shaft to determine open/close sync the control box with the proper direction of rotation (exchange red & black wires to reverse directional control). [Drum(s) should turn so the bottom (closest to the 2" X 2" square tube) of the drum rotates toward the outside.]
- 14) Run drive until stops at the open limit.
- 15) As the drive shaft turns to the closed position observe how the cable would travel across the cable drum.
- 16) Install "cable pulleys with bolt" onto opposite 2" X 2" square tube and align with center of drive drum(s). *QC-0602*
- 17) Install upper drive cable "hanger pulley(s)". Locate so as not to interfere with travel. *QC-0602*
- 18) Thread drive cable through the pulleys opposite of cable drums. Cable will run above the screen profiles. Wrap the cable around the cable drums 3 or 4 times towards the "open" end of the cable drum and then splice the top cable together as shown close to the cable drum end of the upper cable travel as shown using cable clamps and cable tightener. (Test with one cable installed and then return to closed position and install the rest.) *QC-0602*
- 19) Mark lower cable and test travel. The mark should travel from the closed position next to screen profile backside (non-rubber flap end) to the front side (rubber flap end). Adjust travel length with travel adjustment screws on tube motor. Leave in closed position.
- 20) Install wire guide clips on to intermediate screen profile for poly wire top and bottom of screen profile. *QC-0611*
- 21) Install lead edge tube, attaching to drive cable with lead edge cable tube clip positioning the lead edge to be touching screen profile rubber seal.
- 22) Run drive back and forth to adjust limits. Close limit should have lead edge tube in full contact with rubber seal on screen profile.
- 23) Install shade clothes. Be sure to install the cloth shiny side up. Lay cloth on to bottom poly wires below upper wires. Use "S-hook Type II" to attach beginning edge of the cloth to the bottom of the screen profile. Take care to install straight and to center in the space so edge over hang is as required.
- 24) Use sharp scissors to cut slits in the shade cloth to fit around truss members. Clip the shade cloth on both sides of the cut to the screenprofile using Cloth Clips. Pull together and neatly staple, as required, the cut around the truss members.

[&]quot;An amount equal to any tax or other governmental charge upon the production, sale, occupation of selling, shipment or use of material which is now or may be hereafter imposed by Federal, State or Municipal authorities upon either the purchaser or the Winandy Greenhouse Company, Inc., which the Winandy Greenhouse Company, Inc. is obliged to pay or collect, shall be added to the price and shall be paid by the Purchaser."

Page 3 / TGU Curtain Installation Sequence


- 25) Install "S-hook Type II" clips through cloth onto poly wires above cloth in line with wire 12" to 16" center (as needed). *QC-0609*
- 26) Install "Screen Hook" clips onto covered cable at edges 12" to 16" centers (be sure to maintain straight alignment so cloth travels square and true). *QC-0609*
- 27) Clip cloth onto lead edge tube with each lead edge tube clip at each poly wire.
- 28) After installation of cloth operate system carefully to check for any place where mechanism or cloth binds on anything also checking and adjusting limits as needed.
- 29) Edge seals can now be installed the ends may be clipped onto the screen profile then attached to the gable. The side edges may be attached to the last lower poly wire then attached to the side walls.


Created 11/14

[&]quot;An amount equal to any tax or other governmental charge upon the production, sale, occupation of selling, shipment or use of material which is now or may be hereafter imposed by Federal, State or Municipal authorities upon either the purchaser or the Winandy Greenhouse Company, Inc., which the Winandy Greenhouse Company, Inc. is obliged to pay or collect, shall be added to the price and shall be paid by the Purchaser."

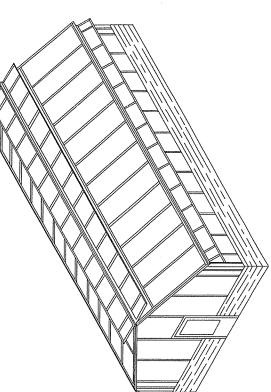
BILL OF LADING - SHORT FORM - NOT NEGOTIABLE

Duce	00/07/20											
			SHIP F	FROM			Bill of Lading Number:					
Winandy Greenhouse Co., Inc. 2211 Peacock Road Richmond, IN 47374 765-935-2111						3083						
	2		SHIP	то			Carrier Name:		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
Merced College 3600 M Street Merced, CA 95348 209-485-0347							Freight Monster					
	THI	RD PART	TY FREIGH	IT CHAF	RGES BILL TO		SCAC:					
							Pro Number:					
_	al Instruc		mon Avila	a on his	nersonal phone 2	09 -	Freight Charge Terms (Frei Prepaid ☑ Collect ☐ 3rd		epaid unless m	arked otherwise):		
Call the Site Contact, Ramon Avila, on his personal phone 209-485-0347 an hour prior to arrival so he can prepare for delivery.						☐ Master bill of lading with a	ttached underly	ing bills of la	ding.			
					CAR	RIER II	NFORMATION					
Hand	andling Unit							LTL (Only			
Qty	Type	Weight		Commodition be so mark	edity Description es requiring special or additi ed and packaged as to ensu of NMFC item 360	or attention in handling or stowing must ansportation with ordinary care. See	NMFC No.	Class				
1	Crate	5700		Aluminu	m 42" W X 48" H x 2	25' L		13560				
1	Crate	5650		Aluminu	m 42"W x 48"H x 2	24' L		13560				
1	Crate	5650		Aluminu	m 42"W x 48"H x 1	16′ L		13560				
1	Gaylord	1375	ri Li i	Fastene	s/Caulk/Foam 42" V	V x 46" I	H x 48" L	093490				
3	Doors	350		Aluminu	m 11"W x 38"H x 8	37" L		13560				
1	Skid	500		Aluminu	m 42"W x 28"H x 1	10' L		13560				
8	8 19,225											
declared		operty as foll	ows: "The agre	eed or decla	o state specifically in writing ared value of the property is er							
	Note: L	iability li	mitation f	or loss	or damage in this	shipme	nt may be applicable. See 4	9 USC § 1470	5(c)(1)(A) a	and (B).		
upon in writing between the carrier and shipper, if applicable, otherwise to the rates, classifications, and rules that have been established by the carrier and are available to					rrier shall not make delivery of t er lawful fees. er Signature	his shipment w	ithout payme	ent of charges and				
Shipper Signature/Date Trailer Loaded:						Carrier Signature/Pickup Date						
By driver □ By driver					Iriver/pallets said to contain Iriver/pieces	Carrier acknowledges receipt of packages and required placards. Carrier certifies emergency response information was made available and/or carrier has the DOT emergency response guidebook or equivalent documentation in the vehicle. Property described above is received in good order, except as noted.						

SERVICE SPEED SATISFACTION WINANDY GREENHOUSE COMPANY, INC. Greenhouse Manufacturers, Builders and Heating Engineers

New

"SUN-MATE"


RICHMOND, INDIANA 47374 2211 PEACOCK ROAD SINCE 1919

ReNew

(765) 935-2110

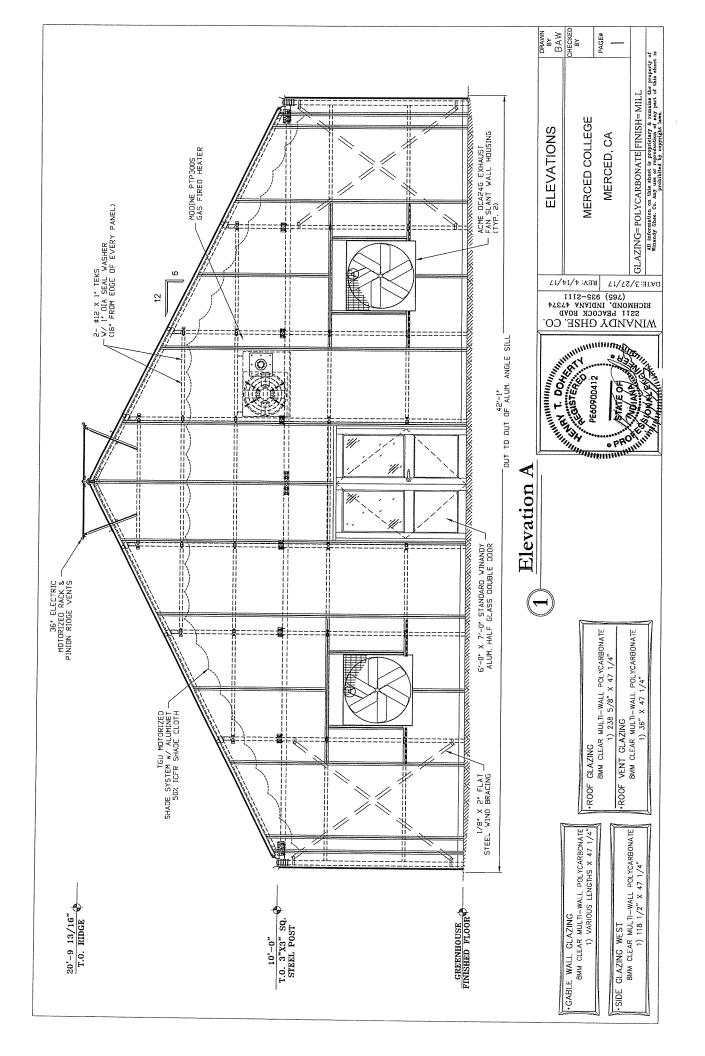
Fax

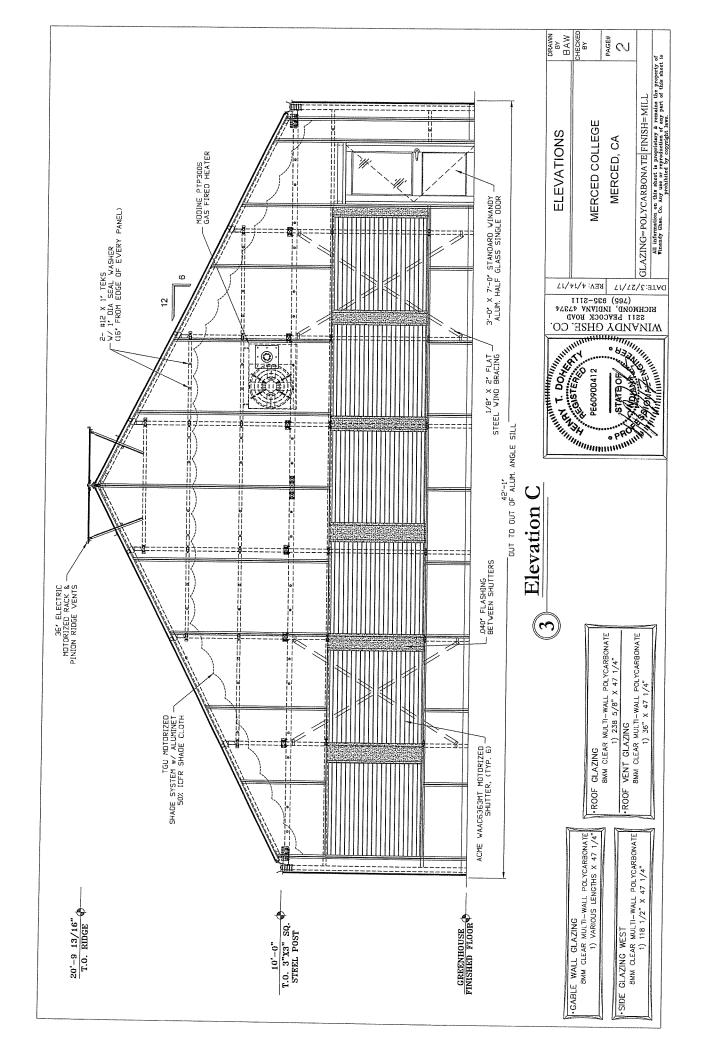
MERCED COLLEGE GREENHOUSE CALCULATIONS PAGES: 1 - 70

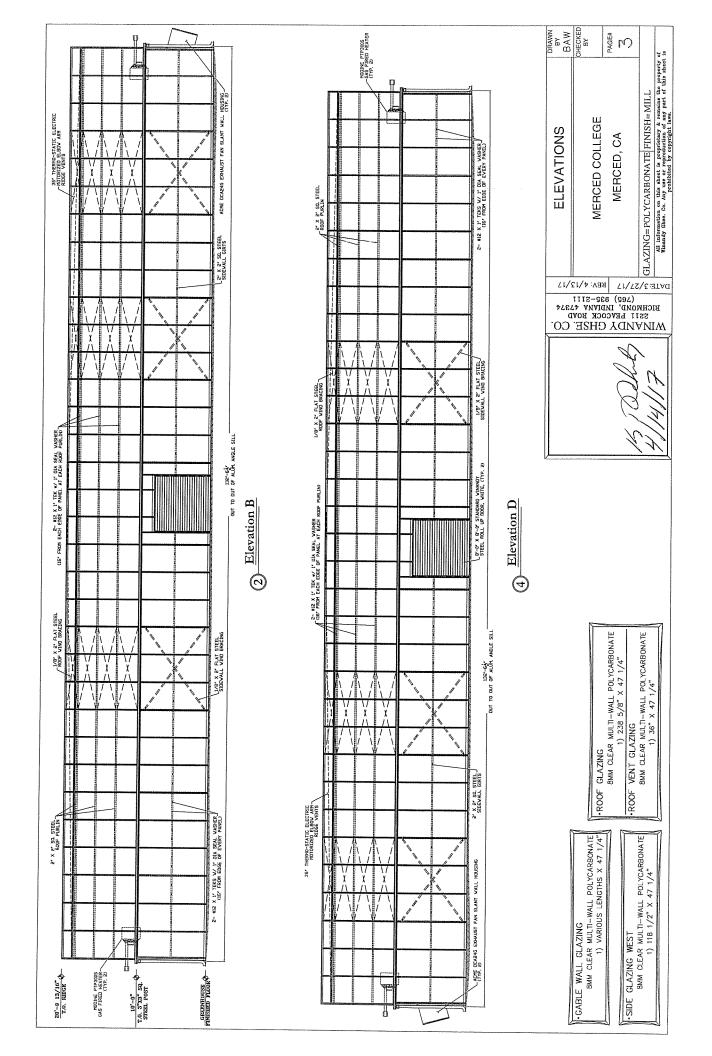
MERCED College Greenhouse

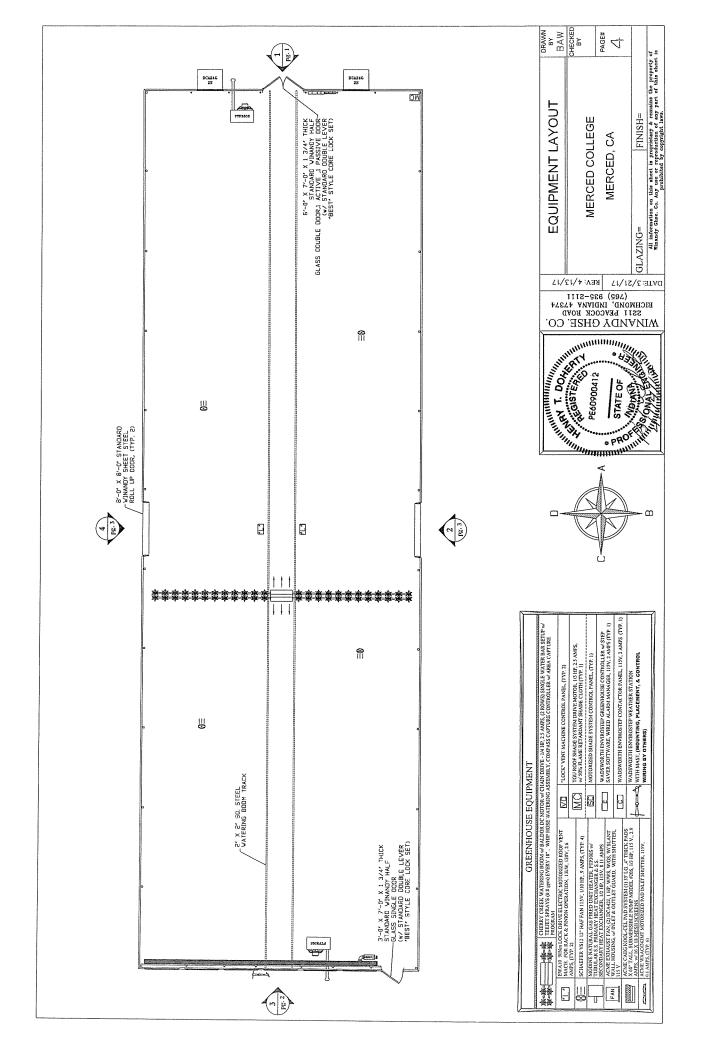
Table of Contents

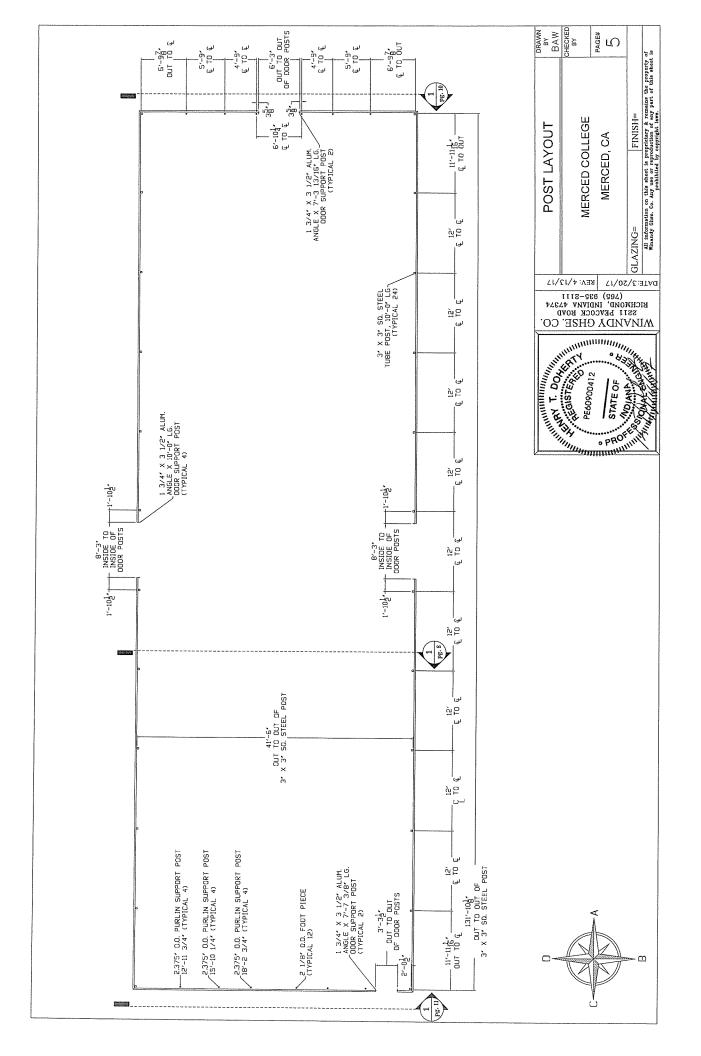
Π-		/ ۱
Pa,	ge	(S)

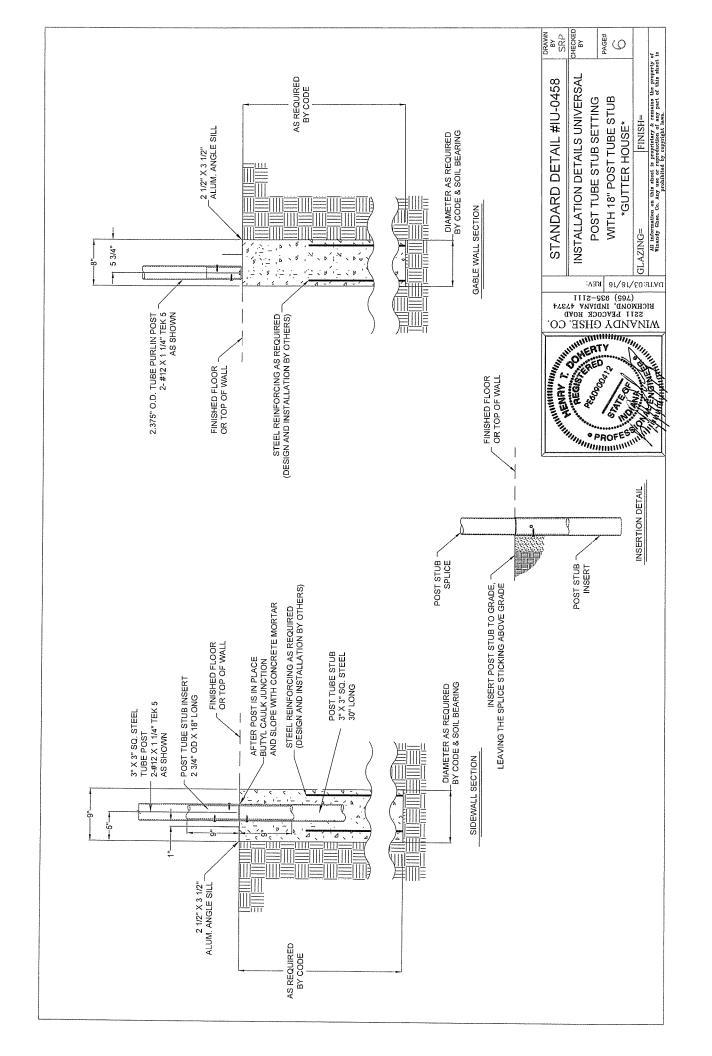

- 1 Design Summary
- 2 20 Structural Drawings
- 21 25 Design Load Criteria and Calculations
- 26 63 Load Analysis Calculations
- 64 70 Member Design Analysis

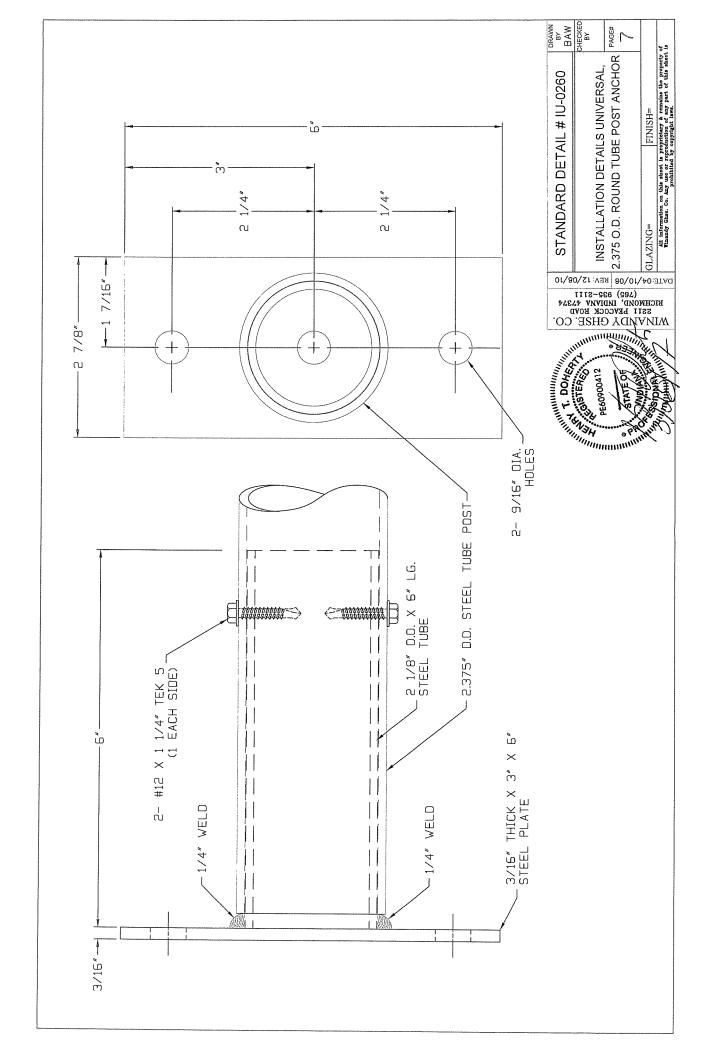

Merced College Merced, CA.

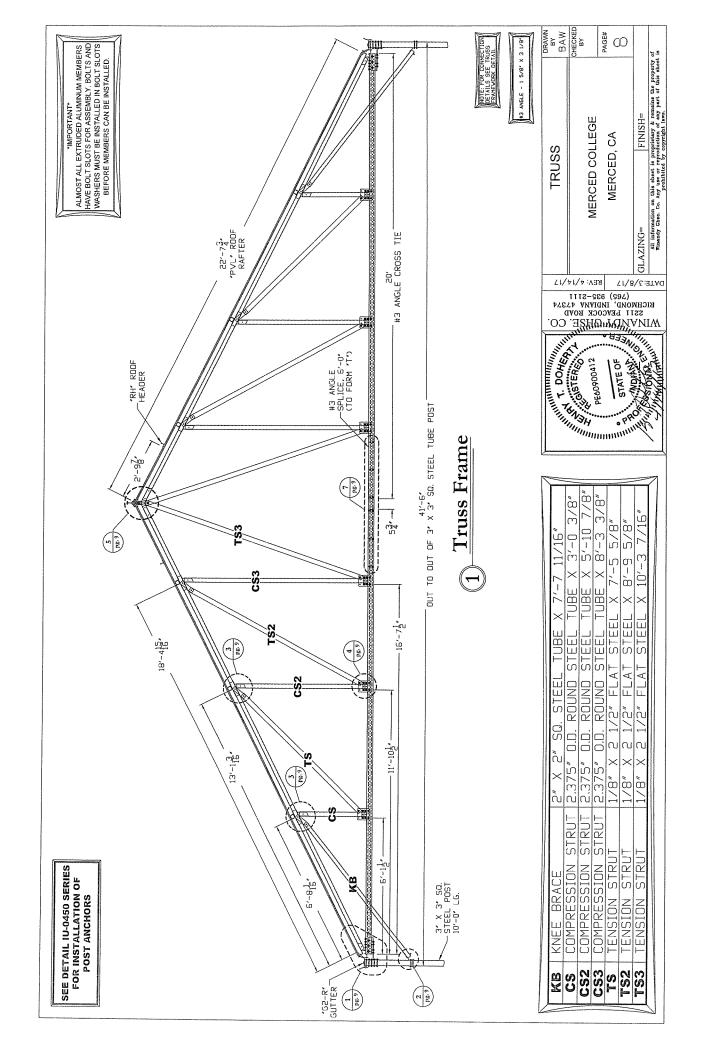

Greenhouse has been designed in accordance with the specifications.

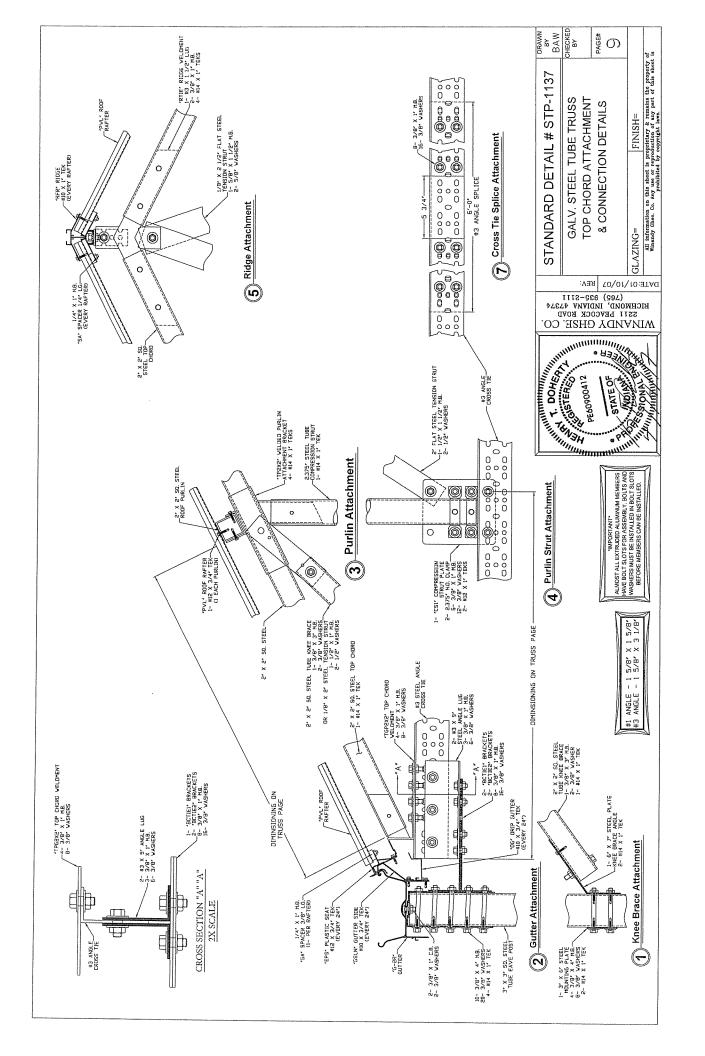

CBC/UBC/IBC Code Base 15 PSF Live Load 6 PSF Dead Load Seismic Category D 85MPH Exp. C Wind Load

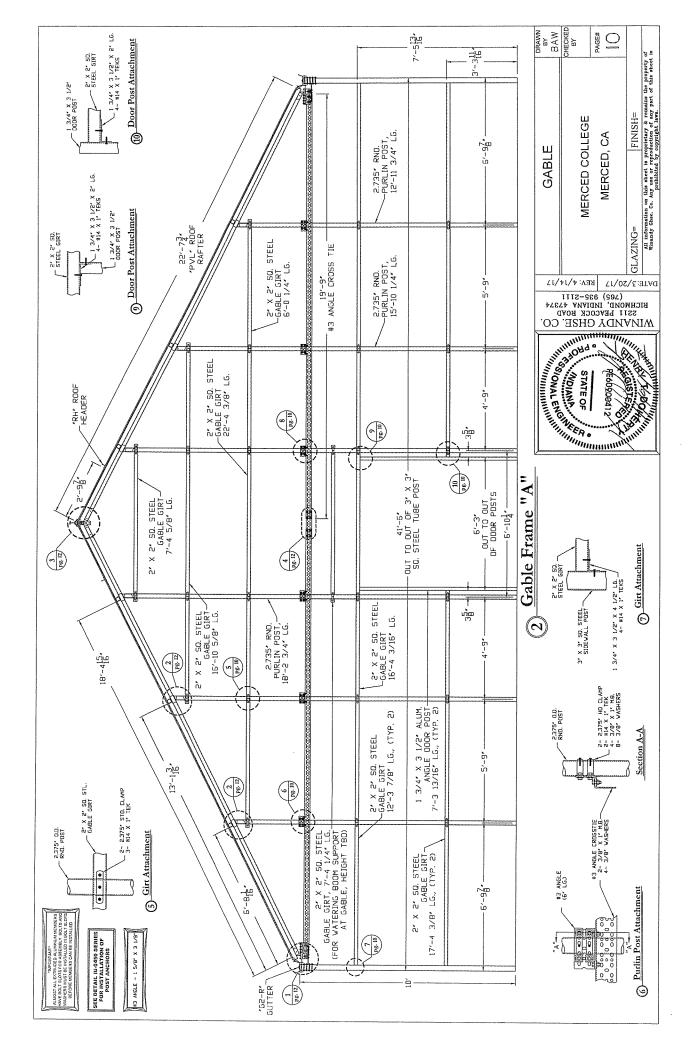

- 1] All aluminum extrusions are from 6061-T6 alloy or equivalent. Fy = 35ksi.
- 2] All Steel Tube is Hot Dipped Galvanized Coated
- 3] All Steel and Fittings are Hot Dipped Galvanized
- 4] All Steel Tubing is manufactured from 50 KSI min yield point steel, 55 KSI min yield point steel
- 5] All bolts are Hot Dipped Galvanized for corrosion resistance.
- 6] All bolts are Grade 5 equal to A-325 in strength rating.
- 7] All connections have been examined and judged to have sufficient fasteners.
- 8] Greenhouse has been designed in accordance with the specifications.
- 9] Greenhouse is to be installed onto foundation designed and installed by others. No floor load is imparted to the greenhouse structure.
- 10] The wind load is greater than the seismic load.
- 11] This greenhouse has a sloped slippery roof covered structure.
- 12] All extrusions and fittings are designed to inter-lock as much as possible to minimize fasteners and have been specially designed for structural as well as specific greenhouse functions.
- 13] All greenhouse members have been checked for ability to withstand prescribed loads.
- 14] The main greenhouse is included in this design only No foundation designs have been included

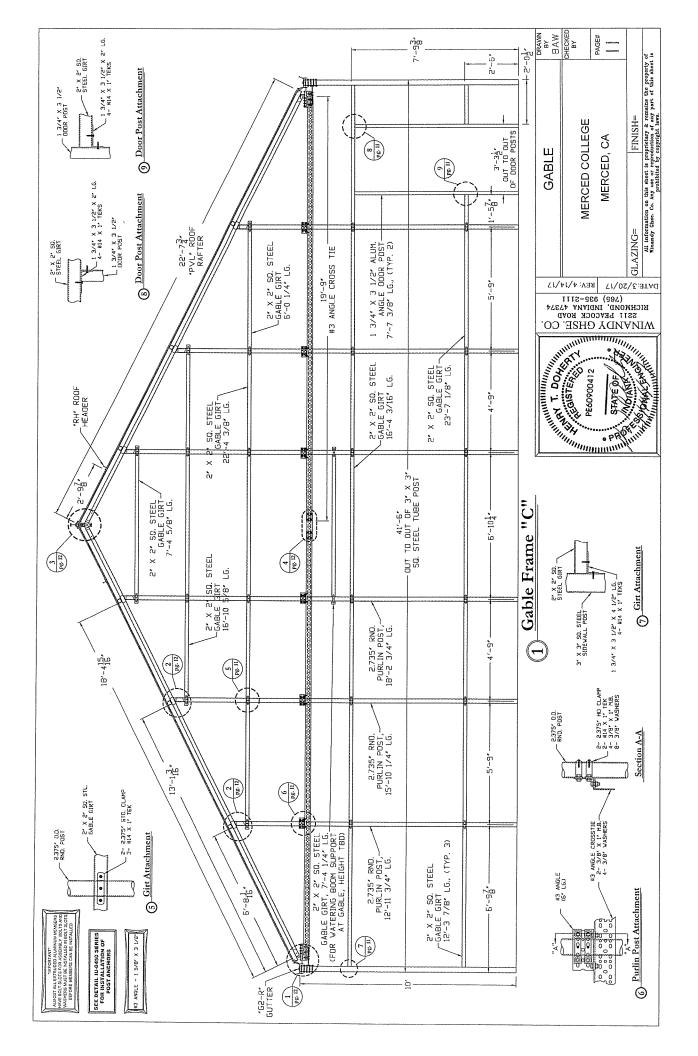


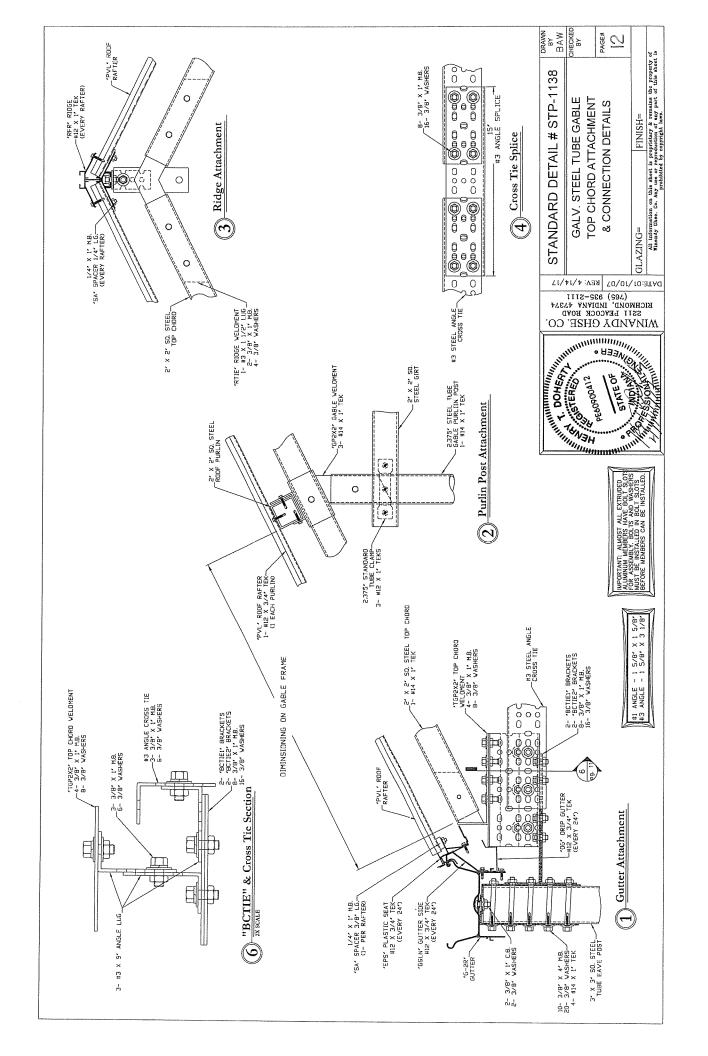


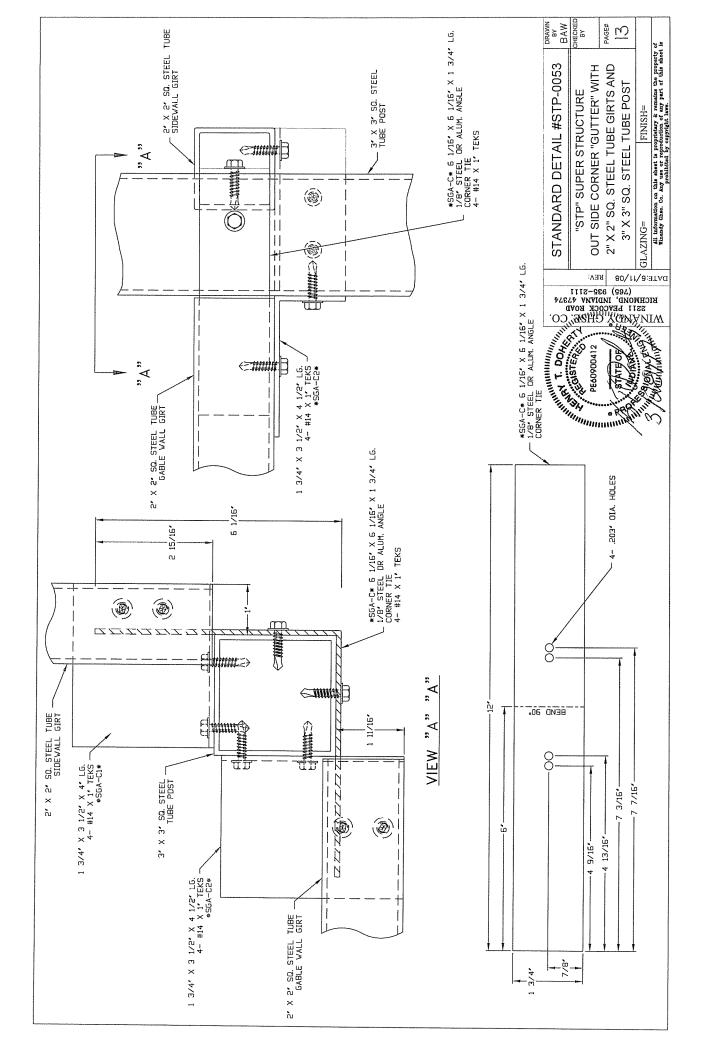


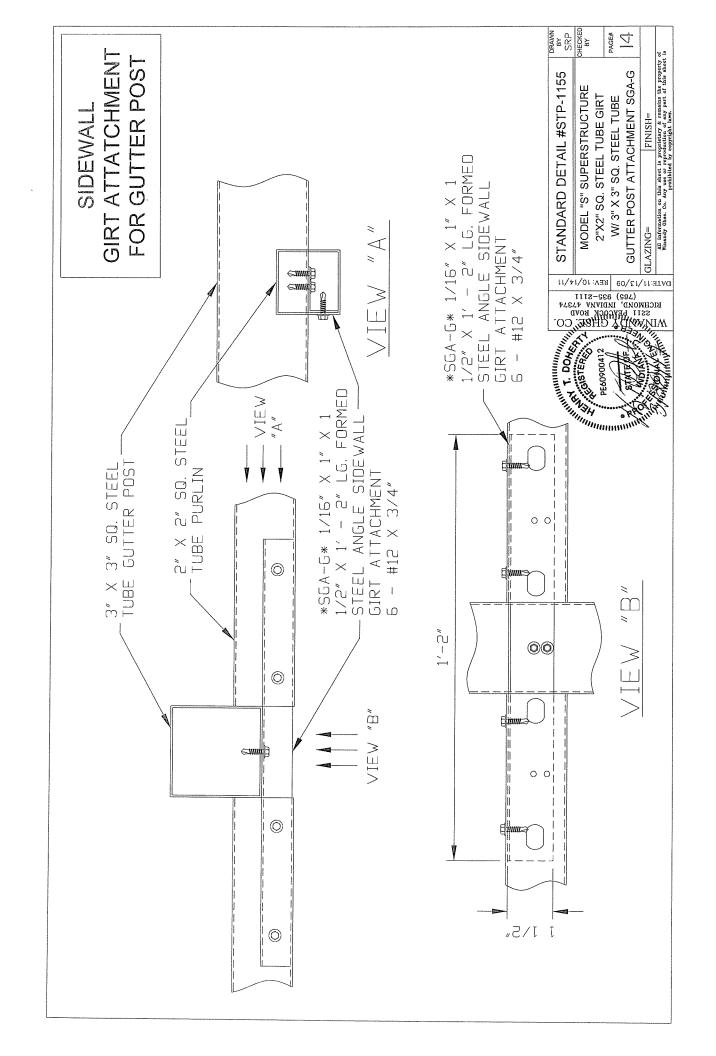


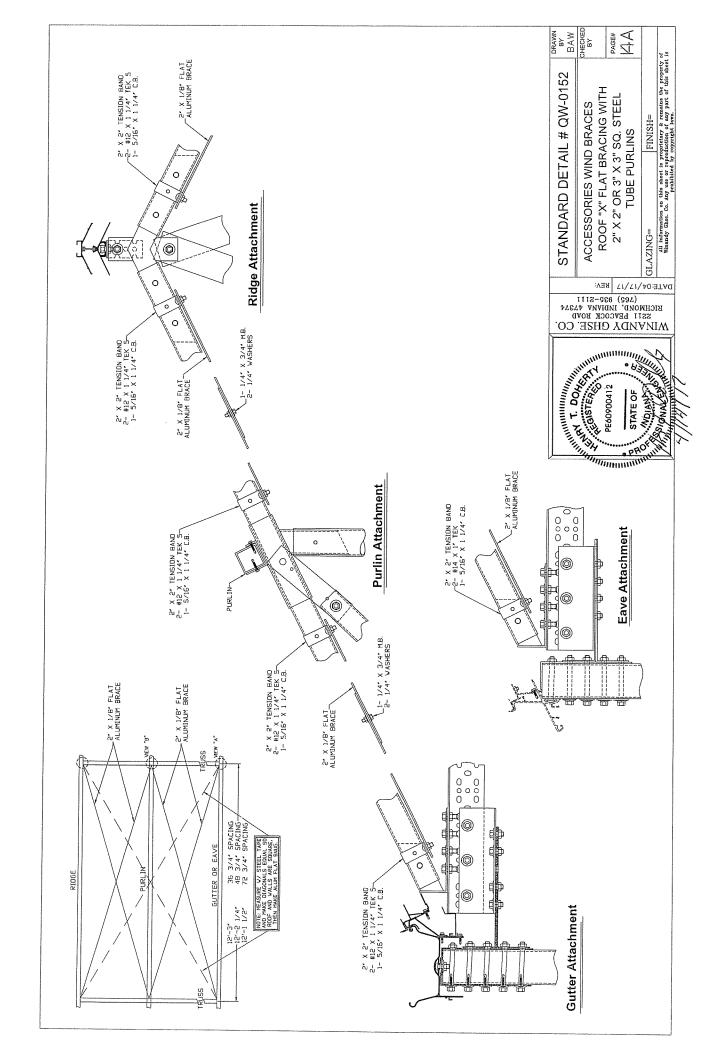


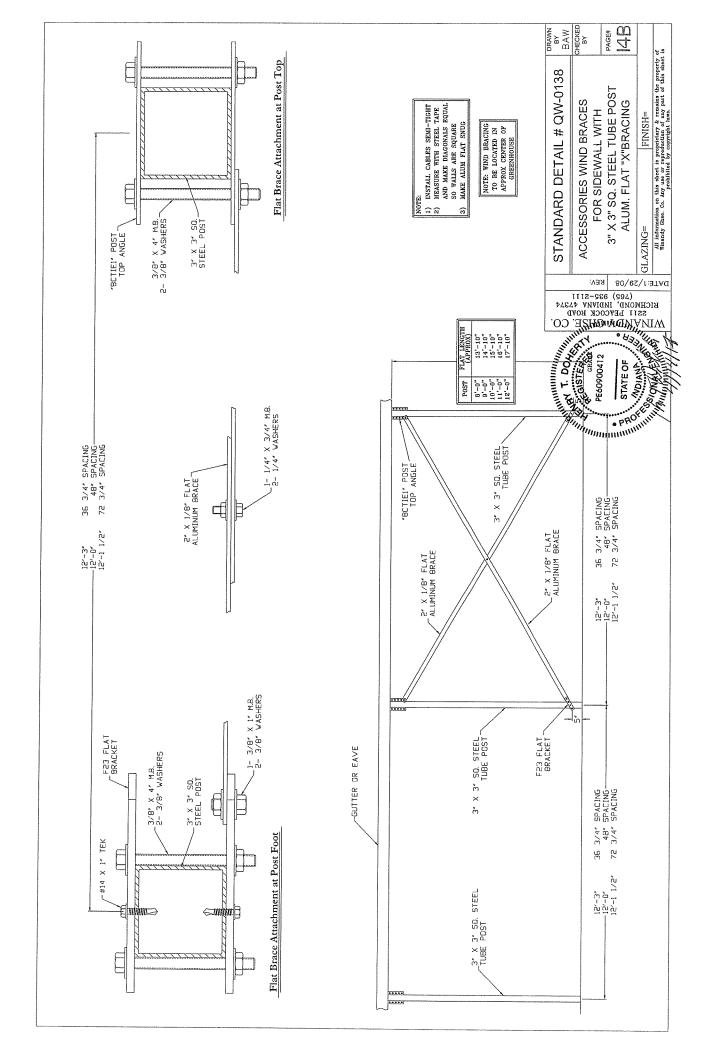


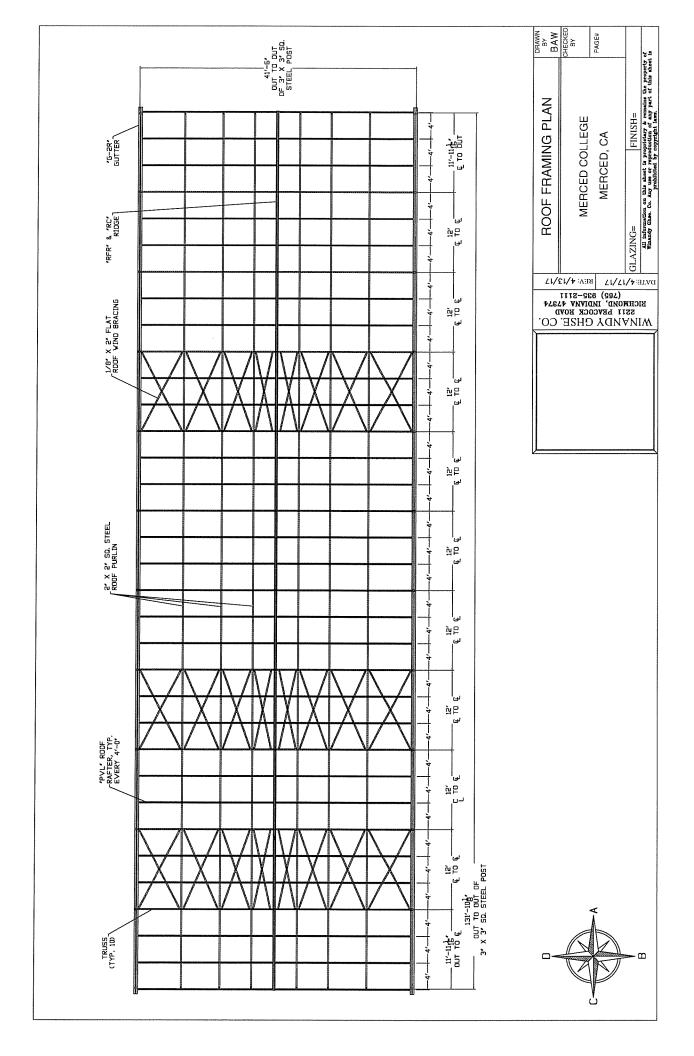


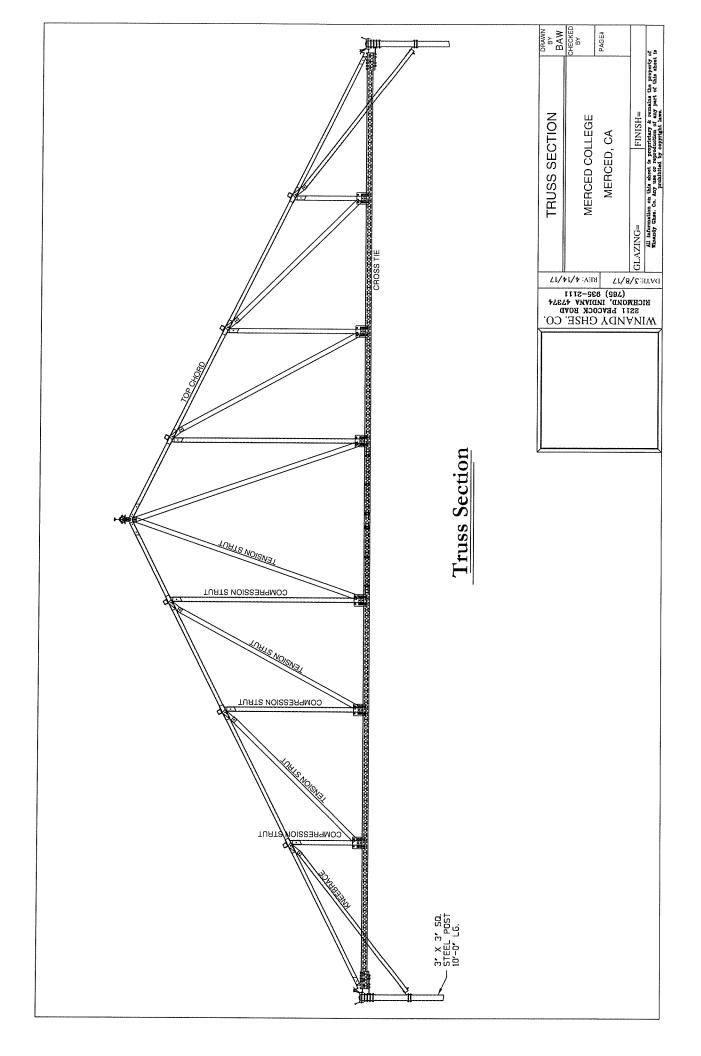


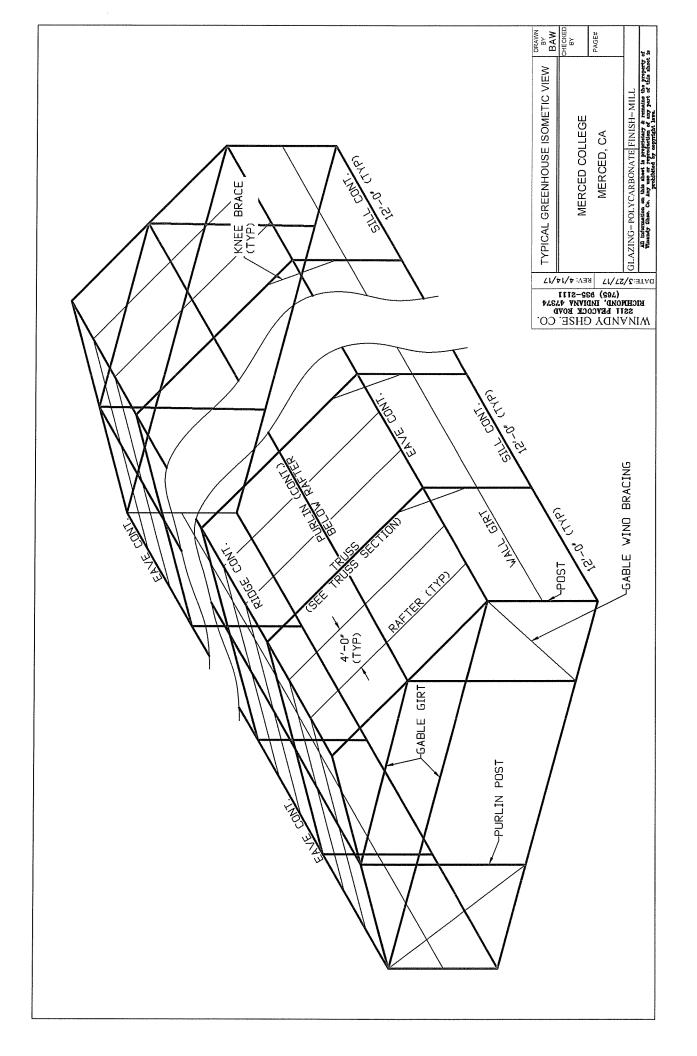












3/3/1/17

3' + 12 × 6 = 216# @ 5,6 Note 6' + 12 × 6 = 432 @ 13,14,16,17

Eloment ... Note
1/2 (20.75-11.875) * 12 * 4= 319.5# 22,23
Panello 2

LL = 15P5F 3' + 12 + 15 = 540 + C 6' + 12 + 15 = 1030 + C 0' +

1/2 (20,75-11,875) × 12 × 15 = 799 # 23

Merced 3/31/17

WL

90 MPH 105 exp B
7.7-PSF

17.4PSF

17.4PSF

5idewall

12443 = 626 # @ Nod 3

17441243 = 626 # @ Nod3 174441412 = 836 # @ 1/2 Elem 1 1.54124174-314 # @ Node 1+5

Roof Hoviz

3 x 12 x 141 = 144 # Non 13,14 + Elem 14 @ 6'2"

1.5 x 12 x y = 72 * Note 5/15

Roof Vert 3×12×7.7 = 278 ^H/No te 5,15 6×12×7.7 = 555 ^H/No te 13, Melw 14.062" 3×12×11.7 = 429 ^H/No te 15,67 6×12×11.7 = 857 ^H/Node 16,17 Elem 15062" Merced

4/ #24.1 PSF * 11 = 1061# 17.4 24.10 Ends 1105+2210+530,5 20,75+12 x 17,4x/6 = 4420# 17.4 Middle 1061#/2 = 530.5 @ Button 4420/2 = 2210@ Post Base 1105 +2210 +531= 3846 10 = tand X=400 X Cos 40° = 3846 # = 5021# Max WB Load 41

Earthquake Load Merced

Siesnic Shear

Note: No Floor Loads Ingparted to the Greenhouse structure & Floor is Slab ongrade.

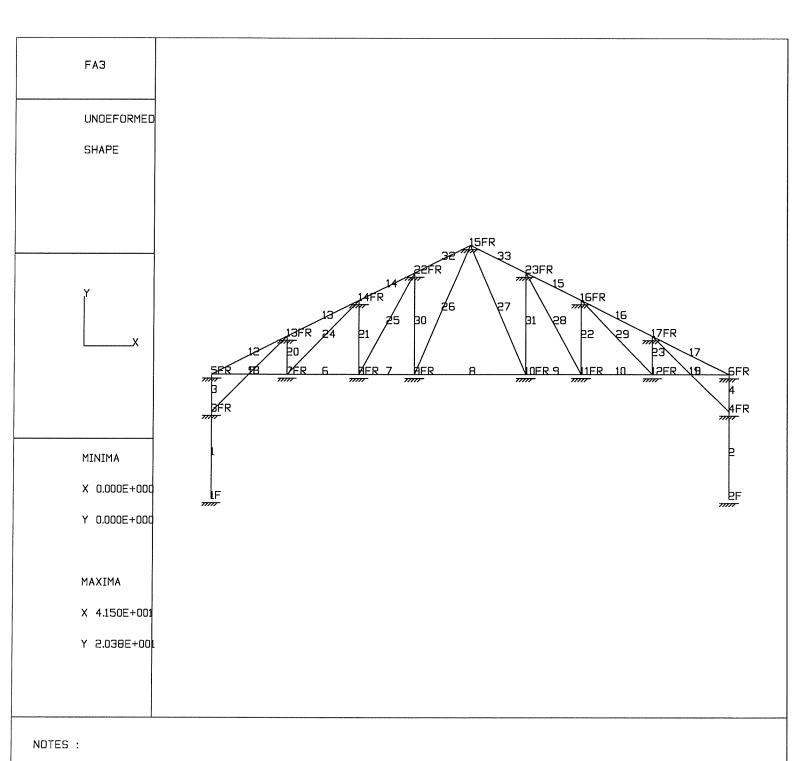
Siesnie Use Group 1

500 = 2/3 5m3

5ms = Fa 35

WX=5PSF

55 = 150%=1.5


Fa = 1

 $F = \frac{1.2(2/3 \pm 1 \pm 1.5)}{2.5}$ (5PSF)

F = 2.5 PSF Load

Smaller than Wh-therfore Windload rules.

2.5 x 12 x 20.5 x = = 312#

JOB ID: MERCED RUN ID: MERCED

PROGRAM : General Frame Analysis v2.05

PAGE NO. 1

WINANDY GREENHOUSE CO. TIME : Thu Apr 13 16:00:59 2017 JOB NO. : 1

JOB : MERCED RUN : MERCED

	=======================================	NODAL	====== I N F	====== O R M A	T I O :	======= N	========	=======
NODE	NODAL C	OORDINATES		5	SUPPORT	CONDITIO	ONS	
NO	X	Y	CODE	PX STI	FF	PY STIFF	M SI	CIFF
Uni	its : Ft	Ft		Lb/Ir	1 = = = = = = = = = = = = = = = = = = =	Lb/In	Lb-Ir	ı/Deg
1	0.000	0.000	F					
2	41.500	0.000	F					
3	0.000	7.000	FR					
4	41.500	7.000	FR					
5	0.000	10.000	FR					
6	41.500	10.000	FR					
7	6.125	10.000	FR					
8	11.875	10.000	FR					
9	16.312	10.000	FR					
10	25.188	10.000	FR					
11	29.625	10.000	FR					
12	35.375	10.000	FR					
13	6.125	13.063	FR					
14	11.875	15.938	FR					
15	20.750	20.375	FR					
16	29.625	15.938	FR					
17	35.375	13.063	FR					
22	16.313	18.156	FR					
23	25.188	18.156	FR					
						=======	=======	=======
ELEM		LEMENT PE ELI		O R M A BETA	PROP	N ELEM	NE	ΡE
NO		ODE LENG		ANGLE	TYPE	TYPE	HINGE	HINGE
		Units : Ft		Deg	S SECURI SUCCES SOURCE SECURI		=======================================	
1	1	3 7	.000	90.00	1	BEAM		

ELEM NO	NE NODE	PE NODE	ELEM LENGTH	BETA ANGLE	PROP TYPE	ELEM TYPE	NE HINGE	PE HINGE	
		Units	: Ft	Deg		:			
1	1	3	7.000	90.00	1	BEAM			
2	2	4	7.000	90.00	1	BEAM			
3	3	5	3.000	90.00	1	BEAM			
4	4	6	3.000	90.00	1	BEAM			
5	5	7	6.125	0.00	2	STRUT	Y	Y	
6	7	8	5.750	0.00	2	STRUT	Y	Y	
7	8	9	4.437	0.00	2	STRUT	Y	Y	
8	9	10	8.876	0.00	2	STRUT	Y	Y	
9	10	11	4.437	0.00	2	STRUT	Y	Y	
10	11	12	5.750	0.00	2	STRUT	Y	Y	
11	12	6	6.125	0.00	2	STRUT	Y	Y	
12	5	13	6.848	26.57	4	BEAM			
13	13	14	6.429	26.57	4	BEAM			
14	14	2.2	4.961	26 55	4	BEAM			

PROGRAM : General Frame Analysis v2.05

PAGE NO. 2

WINANDY GREENHOUSE CO.

JOB: MERCED

TIME: Thu Apr 13 16:01:04 2017

JOB NO.: 1

JOB : MERCED RUN : MERCED

TON . MERCED

ELEM NO	NE NODE	E L E M PE NODE	ENTIN ELEM LENGTH	FORM BETA ANGLE	======= A T I O PROP TYPE	HELEM TYPE	NE HINGE	PE HINGE
	===========					=======		========
15		16	4.960	-26.56	4	BEAM		
16	16	17	6.429	-26.57	4	BEAM		
17		6	6.848	-26.57	4	BEAM		
18	3	13	8.618	44.71	4	BEAM	Y	Y
19	17	4	8.618	-44.71	4	BEAM	Y	Y
20	7	13	3.063	90.00	3	BEAM		
21	8	14	5.938	90.00	3	BEAM		
22	11	16	5.938	90.00	3	BEAM		
23	12	17	3.063	90.00	3	BEAM		
24	7	14	8.266	45.92	5	TRUSS	Y	Y
25	8	22	9.285	61.45	5	TRUSS	Y	Y
26	9	15	11.284	66.84	5	TRUSS	Y	Y
27	10	15	11.284	113.16	5	TRUSS	Y	Y
28	11	23	9.285	118.55	5	TRUSS	Y	Y
29	12	16	8.266	134.08	5	TRUSS	Y	Y
30	22	9	8.156	-90.01	3	BEAM		
31	23	10	8.156	-90.00	3	BEAM		
32	22	15	4.961	26.57	4	BEAM	,	
33	23	15	4.962	153.43	4	BEAM		
			======== E R T Y I					
PROP	Q F (CTION		NFORI	MAII	O N		
NO		AME	MODULU	īC	AREA	Т		DIST
======		-				_	-	
			ts: Lb/In		In2	In		Ft
1	3 X 3		2 00.	0.07	1.1	1		
1 2	3 A 3 #3		2.9e+				55	
3	#3 2.375RND		2.9e+		0.328		.02	
4	2.3/5RND 2 X 2		2.9e+		0.681		443	
5	2 A 2 2 1/2 FLAT	٦	2.9e+		0.825		493	
5	2 1/2 FLAT	-	2.9e+	-00/	0.25	υ.	163	
======	=========		========	========	======			=======================================
				I F O R M	ATIC	N		
REC	LOAD LOAI		PX	PY	M			
ИО	CASE TYPE	C	DX	DY	BET	'A		

Units: Lb Lb Ft-Lb Ft Deg

PROGRAM : General Frame Analysis v2.05

PAGE NO. 3

WINANDY GREENHOUSE CO. TIME: Thu Apr 13 16:01:04 2017

JOB NO. : 1

JOB : MERCED

Description : WL Node List : 13,14

Node List : 15,6 11 3 FORCE

Description : WL

10

RUN : MERCED					302 110 1
REC LOAD NO CASE	TYPE	PX DX	PY DY	M BETA	=======================================
Description : Node List : 1 1	DL 5,6		-216.00		
Description : Node List : 2 1		0.00	-432.00	0.00	
Description : Node List : 3 1	15	0.00	-639.00	0.00	
Description : Node List : 4 2	5,6	0.00	-540.00	0.00	
Description: Node List: 5 2	13,14,16,17 FORCE	0.00	-1080.00	0.00	
Description: Node List: 6 2		0.00	-799.00	0.00	
Description: Node List: 7 3	3	626.00	0.00	0.00	
Description: Node List: 8 3	1,5	314.00	0.00	0.00	
Description : Node List : 9 3	5,15	72.00	278.00	0.00	

3 FORCE 144.00 555.00 0.00

0.00 429.00 0.00

PROGRAM : General Frame Analysis v2.05

PAGE NO. 4

WINANDY GREENHOUSE CO.

JOB: MERCED

TIME: Thu Apr 13 16:01:04 2017

JOB NO.: 1

RUN : MERCED

NODAL LOAD TNFORMATTON

REC LOAD NO CASE	NODAL LOAD TYPE	PX	PY DY	M BETA
Description: Node List: 12 3		0.00	857.00	0.00
Description : Node List : 13 4		312.00	0.00	0.00
Description : Node List : 14 1		0.00	-319.50	0.00
Description : Node List : 15 2		0.00	-799.00	0.00
Description : Node List : 16 3		144.00	555.00	0.00

PROGRAM : General Frame Analysis v2.05

PAGE NO. 5

WINANDY GREENHOUSE CO. TIME : Thu Apr 13 16:01:04 2017 JOB NO. : 1

JOB : MERCED RUN : MERCED

	_				и о	D A	L	D I S	PLACE	MENT	S	
NOD!	E 		LOAD				DX		DY		ROTATION	
					Units	:	In		In		Deg	
LOAD	CO	MBI	NATIO	NS	:							
COMB	1	: +			CASE CASE	1 2						
COMB	2	: + +	0.50	Х	CASE CASE CASE	1 2 3						
COMB	3	: +			CASE CASE	1 3						
COMB	4	: +	1.00			1 4						
	1		1 2 3 4			0 0	.0000 .0000 .0000		0.0000 0.0000 0.0000 0.0000		0.0000 0.0000 0.0000 0.0000	
	2		1 2 3 4			0	.0000 .0000 .0000		0.0000 0.0000 0.0000 0.0000		0.0000 0.0000 0.0000 0.0000	
	3		1 2 3 4			0 . 0 .	.3362 .7781 .8938 .1047		-0.0147 -0.0035 0.0016 -0.0045		0.0000 0.0000 0.0000 0.0000	
	4		1 2 3 4			0 . 0 .	3362 8834 7677 1047		-0.0147 -0.0031 0.0020 -0.0045		0.0000 0.0000 0.0000 0.0000	
	5		1 2 3			0.	1550 8236 8766		-0.0184 -0.0045 0.0018		0.0000 0.0000 0.0000	

PROGRAM : General Frame Analysis v2.05

PAGE NO. 6

WINANDY GREENHOUSE CO.

TIME: Thu Apr 13 16:01:04 2017

JOB: MERCED

JOB NO.: 1

JOB : MERCED RUN : MERCED

		NODAL DI	SPLACEME	========= N T S	
NODE NO	LOAD COMB	DX	DY	ROTATION	
======	4	-0.0491	-0.0056	0.0000	
6	1	0.1550	-0.0184	0.0000	
	2 3 4	0.8697 0.8167 0.0491	-0.0034 0.0030 -0.0056	0.0000 0.0000 0.0000	
7	1	-0.1026	-0.3811	0.0000	
	2 3 4	0.8350 0.8699 -0.0329	-0.0911 0.0410 -0.1170	0.0000 0.0000 0.0000	
8	1	-0.0565	-0.5238	0.0000	
	2 3 4	0.8436 0.8627 -0.0183	-0.1137 0.0672 -0.1620	0.0000 0.0000 0.0000	
9	1 2 3 4	-0.0257 0.8484 0.8570 -0.0084	-0.5369 -0.1068 0.0779 -0.1674	0.0000 0.0000 0.0000 0.0000	
10	1	0.0257	-0.1674	0.0000	
_,	2 3 4	0.8550 0.8464 0.0084	-0.0990 0.0857 -0.1674	0.0000 0.0000 0.0000	
11	1 2 3 4	0.0565 0.8598 0.8408 0.0183	-0.5238 -0.0852 0.0957 -0.1620	0.0000 0.0000 0.0000 0.0000	
12	1 2 3 4	0.1026 0.8658 0.8309 0.0329	-0.3811 -0.0455 0.0866 -0.1170	0.0000 0.0000 0.0000 0.0000	

PROGRAM : General Frame Analysis v2.05

PAGE NO. 7

WINANDY GREENHOUSE CO.

TIME: Thu Apr 13 16:01:04 2017 JOB NO.: 1

JOB : MERCED

RUN : MERCED

		NODAL DI	S P L A C E M E	 N T S	The state that the state said the state that the
NODE NO	LOAD COMB	DX	DY	ROTATION	
		=======================================			=======
13	1 2	0.0061	-0.3813	0.0000	
	2	0.8614	-0.0915	0.0000	
	3 4	0.8585 0.0003	0.0407 -0.1169	0.0000 0.0000	
	-	0.0003	0.1103	0.000	
14	1	0.0527	-0.5291	0.0000	
	2	0.8661	-0.1158	0.0000	
	3	0.8473	0.0671	0.0000	
	4	0.0150	-0.1634	0.0000	
15	1	0.0000	-0.5009	0.0000	
13	2	0.8430	-0.0904	0.0000	
	3	0.8430	0.0811	0.0000	
	4	0.0000	-0.1579	0.000	
	_				
16	1 2	-0.0527 0.8355	-0.5291 -0.0849	0.0000 0.0000	
	3	0.8355	0.0980	0.0000	
	4	-0.0150	-0.1634	0.0000	
17	1	-0.0061	-0.3813	0.0000	
	2	0.8505	-0.0448	0.0000	
	3 4	0.8534 -0.0003	0.0874 -0.1169	0.0000 0.0000	
	-	0.000	0.1105	0.000	
22	1	0.0413	-0.5475	0.0000	
	2	0.8577	-0.1100	0.0000	
	3	0.8431	0.0786	0.0000	
	4	0.0120	-0.1704	0.0000	
23	1	-0.0413	-0.5475	0.0000	
	2	0.8320	-0.1021	0.0000	
	3	0.8466	0.0864	0.0000	
	4	-0.0120	-0.1704	0.000	

PROGRAM : General Frame Analysis v2.05

PAGE NO. 8

WINANDY GREENHOUSE CO.

JOB: MERCED

TIME: Thu Apr 13 16:01:04 2017

JOB NO.: 1

RUN : MERCED

	===:	===		==:	==:	=======================================	==== T	====== 7 T. F. D	:======= I E N T R E	PORTS		:=====:
ELEM	1	L	OAD	1	ION	DE	_			TION : BEAM DE	ESIGNERS	
NO			OMB		N)	P	XIAL	SHEAR	MOMENT	MAX MOM/DEFL	DIST
=====	==:	===	===		= = = I	===== Units	====	===== Lb	Lb	Lb-Ft	Lb-Ft /In	=====: Ft
					,	5111 65	•	1120	⊒ ₽	סו מם	LD IC / III	1 0
LOAD	COI	MBI	NAT	IOI	IS:	•						
COMB	1	:	1.	00	Х	CASE	1					
		+	1.	00	Х	CASE	2					
COMB	2	:	1	0.0	x	CASE	1					
COLID	_					CASE	2					
		+	1.	00	X	CASE	3					
COMB	3	:	1.	00	Х	CASE	1					
		+				CASE	3					
COMB	4		1	00	v	CASE	1					
COMB	-	+				CASE	4					
1			1		1	- 5	617	.4703	-306.7130	1073.4957		
					3	- 5	617	.4703	-306.7130	-1073.4957	-0.0323	1.48
			2		1	- 1	343	.7121	709.9274	-2484.7460		
			_		3			.7121	709.9274		0.0749	1.48
			3		1		605	.5273	815.5157	-2854.3048		
			J		3			.5273	815.5157		0.0860	1.48
						_						
		•	4		1 3			.9915 .9915	-95.5366 -95.5366	334.3779 -334.3779	0.0101	5.52
					J	- 1	. / 10	. , , , , ,	23.3300	-334.3773	0.0101	3.32
า			1		2	_	C17	F207	206 7120	1072 4057		
2			l,		2 4			.5297 .5297	306.7130	-1073.4957 1073.4957	-0.0323	5.52
					-	~	017	. 5251	300.7130	10/3:193/	0.0323	3.32
		:	2		2			.7879	806.0726	-2821.2540		
					4	-1	.199	.7879	806.0726	2821.2540	-0.0850	5.52
			3		2		749	.4727	700.4843	-2451.6952		
					4		749	.4727	700.4843	2451.6952	0.0739	1.48
		_	4		2	1	719	.0085	95.5366	-334.3779		
							· / ユ - /					

PROGRAM : General Frame Analysis v2.05

PAGE NO. 9

WINANDY GREENHOUSE CO. TIME: Thu Apr 13 16:01:04 2017

JOB NO. : 1

JOB : MERCED RUN : MERCED

6

2

=======	=====						
ELEM NO	LOAD COMB	NODE NO	E L E M	ENT RES SIGN CONVENTS SHEAR	PORTS ION: BEAM DES MOMENT	SIGNERS MAX MOM/DEFL	DIST
=======================================	======	======		=======================================		==========	
3	1	3 5	-3235.7325 -3235.7325	2099.3803 2099.3803	-3149.0704 3149.0704	0.0174	0.63
	2	3 5	-904.0285 -904.0285	528.1072 528.1072	-792.1608 792.1608	0.0044	0.63
	3	3 5	220.6811 220.6811	-199.2660 -199.2660	298.8990 -298.8990	0.0017	2.37
	4	3 5	-986.3133 -986.3133	644.6340 644.6340	-966.9510 966.9510	-0.0054	2.37
4	1	4 6	-3235.7809 -3235.7809	-2099.3915 -2099.3915	3149.0872 -3149.0872	0.0174	2.37
	2	4 6	-243.8476 -243.8476	-159.6432 -159.6432	239.4647 -239.4647	0.0013	2.37
	3	4 6	880.8793 880.8793	567.7340 567.7340	-851.6010 851.6010	0.0047	0.63
	4	4 6	-986.3272 -986.3272	-644.6372 -644.6372	966.9557 -966.9557	-0.0054	0.63
5	1	5 7	6783.8630 6783.8630	0.0000	0.0000		
	2	5 7	1468.4942 1468.4942	0.0000 0.0000	0.0000 0.0000		
	3	5 7	-872.9695 -872.9695	0.0000 0.0000	0.0000		
	4	5 7	2100.9355 2100.9355	0.0000	0.0000 0.0000		

 1
 7
 6358.2150
 0.0000
 0.0000

 8
 6358.2150
 0.0000
 0.0000

7 1185.5663 0.0000 0.0000 8 1185.5663 0.0000 0.0000

PROGRAM : General Frame Analysis v2.05

PAGE NO. 10

WINANDY GREENHOUSE CO.

TIME : Thu Apr 13 16:01:04 2017 JOB NO. : 1

JOB : MERCED RUN : MERCED

ELEM NO	LOAD COMB	NODE NO	E L E M	ENT REPO SIGN CONVENTION SHEAR	: BEAM DESI	======= GNERS AX MOM/DEFL	DIST
======	======	=====		=============			======
	3	7 8	-992.5228 -992.5228	0.0000 0.0000	0.0000		
	4	7 8	2002.0368 2002.0368	0.0000	0.0000		
7	1	8 9	5506.0733 5506.0733	0.0000	0.0000		
	2	8 9	864.2762 864.2762	0.0000 0.0000	0.0000		
	3	8 9	-1005.4830 -1005.4830	0.0000	0.0000		
	4	8 9	1766.5548 1766.5548	0.0000	0.0000		
8	1	9 10	4585.0431 4585.0431	0.0000	0.0000		
	2	9 10	589.4953 589.4953	0.0000	0.0000		
	3	9 10	-948.6697 -948.6697	0.0000	0.0000		
	4	9 10	1508.7132 1508.7132	0.0000	0.0000		
9	1	10 11	5505.9809 5505.9809	0.0000	0.0000		
	2	10 11	859.9116 859.9116	0.0000	0.0000		
	3	10 11	-1009.8214 -1009.8214	0.0000 0.0000	0.0000 0.0000		
	4	10 11	1766.5148 1766.5148	0.0000	0.0000		

PROGRAM : General Frame Analysis v2.05

PAGE NO. 11

WINANDY GREENHOUSE CO.

TIME : Thu Apr 13 16:01:04 2017 JOB NO. : 1

JOB : MERCED RUN : MERCED

			E L E M				
ELEM NO	LOAD COMB	NODE NO	AXIAL	SIGN CONVENTION SHEAR		IGNERS MAX MOM/DEFL	DIST
_ = = = = = = =	=====				:=======		======
10	1	11 12	6358.3297 6358.3297	0.0000 0.0000	0.0000		
	2	11 12	822.0550 822.0550	0.0000	0.0000		
	3	11 12	-1356.0750 -1356.0750	0.0000	0.0000		
	4	11 12	2002.0697 2002.0697	0.0000	0.0000		
11	1	12 6	6783.9702 6783.9702	0.0000	0.0000		
	2	12 6	501.7582 501.7582	0.0000 0.0000	0.0000 0.0000		
	3	12 6	-1839.7437 -1839.7437	0.0000	0.0000		
	4	12 6	2100.9663 2100.9663	0.0000	0.0000		
12	1	5 13	-5298.9069 -5298.9069	122.6298 122.6298	-419.8954 419.8954	0.0382	1.45
	2	5 13	-1497.6320 -1497.6320		-100.2255 100.2255	0.0091	1.45
	3	5 13	328.2951 328.2951	-13.2423 -13.2423	45.3429 -45.3429	0.0041	5.40
	4	5 13	-1647.0527 -1647.0527	37.6037 37.6037	-128.7586 128.7586	-0.0117	5.40
13	1	13 14	-7578.7157 -7578.7157	57.1894 57.1894	-183.8265 183.8265	-0.0147	5.07

PROGRAM : General Frame Analysis v2.05

PAGE NO. 12

WINANDY GREENHOUSE CO.

TIME : Thu Apr 13 16:01:04 2017 JOB NO. : 1

JOB : MERCED RUN : MERCED

F T. F M F N T D F D O D T C

			E L E M	======================================	======== R T S	. = = = = = = = = = = = = = = = = = = =	=======================================
ELEM NO	LOAD COMB	NODE NO	AXIAL	SIGN CONVENTION SHEAR	MOMENT	ESIGNERS MAX MOM/DEFL	DIST
		=====					======
	2	13	-2053.3593	8.8951	-28.5920		
		14	-2053.3593	8.8951	28.5920	-0.0023	5.07
	3	13	561.0981	-10.6981	34.3873		
		14	561.0981	-10.6981	-34.3873	-0.0028	1.36
	4	13	-2349.8008	18.0030	-57.8679		
		14	-2349.8008	18.0030	57.8679	0.0046	1.36
14	1	14	-7403.5344	9.2078	-22.8418		
	_	22	-7403.5344	9.2078	22.8418	-0.0011	3.91
	2	14	-1970.6976	-7.2398	17.9597		
		22	-1970.6976	-7.2398	-17.9597	-0.0009	1.05
	3	14	565.5531	-9.8668	24.4766		
		22	565.5531	-9.8668	-24.4766	0.0012	3.91
	4	14	-2331.0329	3.9537	-9.8080		
		22	-2331.0329	3.9537	9.8080	0.0005	1.05
15	1	23	-7403.9859	-9.1830	22.7761		
	_	16	-7403.9859	-9.1830	-22.7761	0.0011	3.91
	2	23	-1815.5678	-13.8381	34.3219		
		16	-1815.5678	-13.8381	-34.3219	0.0016	3.91
	3	23	720.8393	-11.2199	27.8280		
		16	720.8393	-11.2199	-27.8280	0.0013	3.91
	4	23	-2331.1718	-3.9465	9.7883	0.0005	1 05
		16	-2331.1718	-3.9465	-9.7883	-0.0005	1.05
16	1	16	-7578.8373	-57.1886	183.8240		
-	_	17	-7578.8373		183.8240	0.0147	5.07
	2	16	-1416.9576	-15.8876	51.0682		
		17	-1416.9576	-15.8876	-51.0682	0.0041	5.07
	3	16	1197.5432	3.7053	-11.9103		
		17	1197.5432	3.7053	11.9103	0.0010	1.36

PROGRAM : General Frame Analysis v2.05

PAGE NO. 13

WINANDY GREENHOUSE CO.

TIME : Thu Apr 13 16:01:04 2017 JOB NO. : 1

JOB : MERCED RUN : MERCED

ELEM	LOAD	NODE	E L E M	======== ENTREPC SIGN CONVENTION		CTCMEDC	
NO 	COMB		AXIAL	SIGN CONVENTION SHEAR	MOMENT	MAX MOM/DEFL	DIST
			0240 0255				
	4	16 17	-2349.8357 -2349.8357	-18.0028 -18.0028	57.8671 -57.8671	-0.0046	1.36
17	1	17 6	-5299.0143 -5299.0143	-122.6301 -122.6301	419.8967 -419.8967	0.0382	5.40
	2	17	-389.5587	-14.0976	48.2715		
	_	6	-389.5587	-14.0976	-48.2715	0.0044	5.40
	3	17	1436.4067	28.4155	-97.2973	0.0000	1 15
		6	1436.4067	28.4155	97.2973	0.0088	1.45
	4	17 6	-1647.0836 -1647.0836	-37.6038 -37.6038	128.7590 -128.7590	0.0117	5.40
18	1	3 13	-3385.5516 -3385.5516	0.0000 0.0000	0.0000		
	0						
	2	3 13	-624.9939 -624.9939	0.0000 0.0000	0.0000 0.0000		
	3	3	547.0446	0.0000	0.0000		
		13	547.0446	0.0000	0.0000		
	4	3 13	-1041.4748 -1041.4748	0.0000 0.0000	0.0000		
		13	1041.1740	0.0000	0.0000		
19	1	17	-3385.5674	0.0000	0.0000		
		4	-3385.5674	0.0000	0.0000		
	2	17 4	-1358.8336 -1358.8336	0.0000 0.0000	0.0000 0.0000		
	3	17	-186.7896	0.0000	0.0000		
	ی	4	-186.7896	0.0000	0.0000		
	4	17	-1041.4793	0.0000	0.0000		
		4	-1041.4793	0.0000	0.0000		

PROGRAM : General Frame Analysis v2.05

PAGE NO. 14

WINANDY GREENHOUSE CO.

TIME : Thu Apr 13 16:01:04 2017 JOB NO. : 1

JOB : MERCED RUN : MERCED

=======							
			E L E M	ENT REP	ORTS		
ELEM	LOAD COMB	NODE NO	AXIAL	SIGN CONVENTIO SHEAR	MOMENT M	MAX MOM/DEFL	DIST
		======	=========	=======================================	=======================================	============	
20	1	7	-90.9862	337.5425	-516.9464		
		13	-90.9862	337.5425	516.9464	0.0105	0.65
	2	7	-207.5342	81.9644	-125.5285		
		13	-207.5342	81.9644	125.5285	0.0025	0.65
	3	7	-160.0280	-35.4081	54.2275		
	J	13	-160.0280	-35.4081	-54.2275	0.0011	2.42
	4	7 13	4.0262		-157.4344	0 0000	0 40
		13	4.0262	102.7975	157.4344	-0.0032	2.42
0.7	-	0					
21	1	8 14	-1480.5336 -1480.5336	46.5252 46.5252	-138.1333 138.1333	0.0105	1.25
		7.4	I400.3330	40.3232	130,1333	0.0105	1.25
	2	8	-572.8169	9.5979	-28.4961		
		14	-572.8169	9.5979	28.4961	0.0022	1.25
	3	8	-35.8695	-6.5578	19.4702		
		14	-35.8695	-6.5578	-19.4702	0.0015	4.68
	4	8	-406.6389	14.2138	-42.2007		
		14	-406.6389	14.2138	42.2007	0.0032	1.25
22	1	11	-1481.2502	-46.5240	138.1298		
		16	-1481.2502		-138.1298	-0.0105	1.25
	2	7 7	00 (100	10 0405	20 5051		
	2	11 16	88.6100 88.6100	-10.3487 -10.3487	30.7251 -30.7251	-0.0023	1.25
		10	00.0100	-10.5467	-30.7231	-0.0023	1.25
	3	11	625.8025	5.8066	-17.2399		
		16	625.8025	5.8066	17.2399	-0.0013	4.68
	4	11	-406.8652	-14.2134	42.1996		
		16	-406.8652	-14.2134	-42.1996	0.0032	4.68
23	1	12	-90.9804	-337.5406	516.9434		
		17	-90.9804	-337.5406	-516.9434	0.0105	2.42
	2	10	270 0050	45 5505	70 0540		
	2	12 17	379.8950 379.8950	-47.5705 -47.5705	72.8543 -72.8543	0.0015	2.42
		- ·	3,3.0330	17.5705	, 2.0343	0.0015	2.12

PROGRAM : General Frame Analysis v2.05

PAGE NO. 15

WINANDY GREENHOUSE CO. TIME : Thu Apr 13 16:01:04 2017 JOB NO. : 1

JOB : MERCED RUN : MERCED

ELEM NO	LOAD COMB	NODE NO	E L E M	ENTREP SIGN CONVENTIO SHEAR		IGNERS MAX MOM/DEFL	DIST
	=====			=======================================	=========	=======================================	
	3	12 17	427.3991 427.3991	69.8013 69.8013	-106.9006 106.9006	0.0022	0.65
	4	12 17	4.0279 4.0279	-102.7969 -102.7969	157.4335 -157.4335	-0.0032	0.65
24	1	7 14	126.6533 126.6533	0.0000	0.0000		
	_						
	2	7 14	288.8889 288.8889	0.0000 0.0000	0.0000 0.0000		
	3	7 14	222.7599 222.7599	0.0000	0.0000		
	4	7 14	-5.6046 -5.6046	0.0000	0.0000 0.0000		
0.5	_		1605 5050				
25	1	8 22	1685.5259 1685.5259	0.0000 0.0000	0.0000 0.0000		
	2	8 22	652.1282 652.1282	0.0000	0.0000		
	3	8 22	40.8360 40.8360	0.0000	0.0000		
	4	8 22	462.9415 462.9415	0.0000	0.0000		
26	1	9 15	2314.5413 2314.5413	0.0000	0.0000		
	2	9 15	694.9785 694.9785	0.0000	0.0000		
	3	9 15	-138.6732 -138.6732	0.0000	0.0000		
	4	9 15	647.2380 647.2380	0.0000	0.0000		

PROGRAM : General Frame Analysis v2.05

PAGE NO. 16

WINANDY GREENHOUSE CO.

TIME: Thu Apr 13 16:01:04 2017

JOB: MERCED

JOB NO.: 1

JOB : MERCED RUN : MERCED

======	======	=====					======
			ELEM	ENT REPO	RTS		
ELEM	LOAD	NODE		SIGN CONVENTION		RETENERS	
			7. 32 T 7. T				рташ
ИО	COMB	ИО	AXIAL	SHEAR	MOMENT	MAX MOM/DEFL	DIST
=======	======	======	=======================================	=======================================			
27	1	10	2212 6405	0.0000	0.0000		
2 /	1		2313.6495				
		15	2313.6495	0.0000	0.0000		
	2	10	677.9449	0.0000	0.0000		
		15	677.9449	0.0000	0.0000		
			0,,13113	0.000	0.0000		
	2	1.0	155 4005	0.0000	0 0000		
	3	10	-155.4035	0.0000	0.0000		
		15	-155.4035	0.000	0.0000		
	4	10	646.9527	0.0000	0.0000		
	-	15	646.9527	0.0000	0.0000		
		10	040.9327	0.0000	0.0000		
28	1	11	1686.2550	0.000	0.0000		
		23	1686.2550	0.0000	0.0000		
	2	11	-100.8736	0.0000	0.0000		
	2						
		23	-100.8736	0.0000	0.0000		
	3	11	-712.4135	0.000	0.0000		
		23	-712.4135	0.000	0.0000		
	4	11	463.1753	0.0000	0.0000		
	-						
		23	463.1753	0.0000	0.0000		
29	1	12	126.6453	0.000	0.0000		
		16	126.6453	0.0000	0.0000		
			120.0133	0.000	0.0000		
	2	1.0	FOO 0161	0.0000	0 0000		
	2	12	-528.8161	0.0000	0.0000		
		16	-528.8161	0.0000	0.0000		
	3	12	-594.9422	0.000	0.0000		
		16	-594.9422	0.000	0.0000		
			331.3122	0.0000	0.0000		
	Λ	1 0	F 6060	0 0000	0 0000		
	4	12	-5.6068	0.0000	0.0000		
		16	-5.6068	0.0000	0.0000		
30	1	22	-2128.0232	11.0094	-44.8963		
2.0		9	-2128.0232	11.0094	44.8963	-0.0064	6.43
		J	Z1Z0.UZ3Z	11.0054	44.0703	-0.004	0.43

PROGRAM : General Frame Analysis v2.05

PAGE NO. 17

WINANDY GREENHOUSE CO.

TIME: Thu Apr 13 16:01:04 2017

JOB: MERCED

JOB NO.: 1

RUN : MERCED

			E L E M	========== ENT REP(======== D R T S	=======================================	======
ELEM	LOAD	NODE		SIGN CONVENTION	N : BEAM DES		
NO	COMB	NO	AXIAL	SHEAR ==========	MOMENT	MAX MOM/DEFL	DIST
	2	22	-638.9736	1.5325	-6.2494		
		9	-638.9736	1.5325	6.2494	-0.0009	6.43
	3	22	127.4980	-2.2905	9.3405		
		9	127.4980	-2.2905	-9.3405	-0.0013	1.72
	4	22	-595.0801	3.3636	-13.7166		
	-	9	-595.0801	3.3636	13.7166	-0.0020	6.43
31	1	23	-2127.2047	-11.0067	44.8854		
		10	-2127.2047	-11.0067	-44.8854	0.0064	6.43
	2	23	-623.3129	-3.7886	15.4500		
	2	10	-623.3129	-3.7886	-15.4500	-0.0022	1.72
	2	0.0	140 0004				
	3	23 10	142.8804 142.8804	0.0334 0.0334	-0.1360 0.1360		
				0.0331	. 1300		
	4	23 10	-594.8182 -594.8182	-3.3628	13.7133	0 0000	C 12
		10	-594.8182	-3.3628	-13.7133	0.0020	6.43
32	1	22 15	-6462.7109 -6462.7109	-48.9032 -48.9032	121.3030 -121.3030	-0.0058	1.05
		13	0402.7109	-40.9032	-121.3030	-0.0038	1.05
	2	22	-1775.6488	-19.6241	48.6771		
		15	-1775.6488	-19.6241	-48.6771	0.0023	3.91
	3	22	419.9218	-1.8974	4.7064		
		15	419.9218	-1.8974	-4.7064	0.0002	3.91
	4	22	-2071.5698	-13.4497	33.3616		
		15	-2071.5698	-13.4497	-33.3616	0.0016	3.91
33	1	23	-6462.0615	48.8440	-121.1778		
		15	-6462.0615	48.8440	121.1778	-0.0058	3.91
	2	23	-1852.1315	12.5193	-31.0594		
	_	15	-1852.1315	12.5193	31.0594	-0.0015	3.91
	3	22	242 2107	F 1066	10 0000		
	3	23 15	343.2187 343.2187	-5.1866 -5.1866	12.8675 -12.8675	-0.0006	1.05
			212.210,	3.1000	12.0075	0.000	

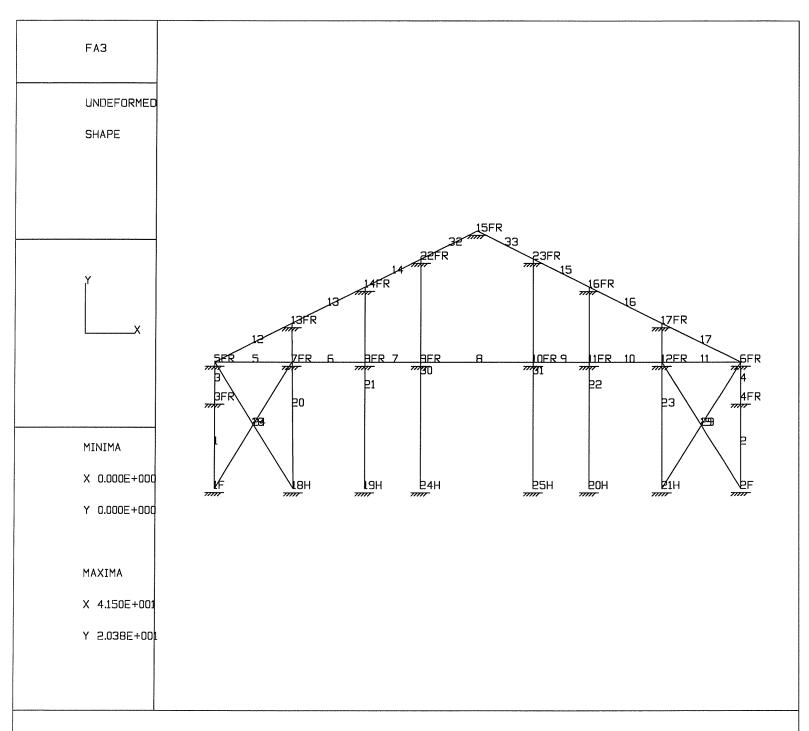
PROGRAM : General Frame Analysis v2.05

PAGE NO. 18

WINANDY GREENHOUSE CO.

TIME: Thu Apr 13 16:01:04 2017 JOB NO. : 1

JOB : MERCED RUN : MERCED


ELEM NO	LOAD COMB	NODE NO		==== E L AXI <i>P</i>				_	ONVE		ON	R T S : BEAM DESIG MOMENT MA		DIST
	4	23 15	-2071 -2071						. 432 . 432	_		-33.3240 33.3240	-0.0016	3.91
NODE NO	LOA COM	 B ======	===== R ===== nits :	E E PX ====	 :===	= = = C ===	T===	I I ====	0	PY	= = = S = = =	MOMEN 	_ ==========	

LOAD COMBINATIONS:

COMB	1		1.00			1 2
COMB	2	+	1.00 0.50 1.00	X	CASE	1 2 3
COMB	3		1.00			1 3

COMB	4	:	1.00	Χ	CASE	1	
		+	1.00	Χ	CASE	4	

1	1	306.7130	5617.4703	-1073.4957
	2	-1023.9274	1343.7121	2484.7460
	3	-1129.5157	-605.5273	2854.3048
	4	-216.4634	1718.9915	-334.3779
2	1	-306.7130	5617.5297	1073.4957
	2	-806.0726	1199.7879	2821.2540
	3	-700.4843	-749.4727	2451.6952
	4	-407.5366	1719.0085	334.3779

NOTES :

JOB ID: MERCEO

RUN ID: MERCEDGABLE

PROGRAM : General Frame Analysis v2.05

PAGE NO. 1

WINANDY GREENHOUSE CO. TIME: Thu Apr 13 17:38:59 2017 JOB : MERCED JOB NO. : 1

RUN : MERCEDGABLE

RUN : ME	RCEDGABLE							
NODE NO	NODAL X	NODAL COORDINATES Y	I N F CODE	O R M A S PX STI	UPPORT	====== N CONDITI PY STIFF		 riff
	its : Ft	======== Ft	=======	===== Lb/In		====== Lb/In	:====== 1b-I1	======= n /Deg
1	0.000	0.000	F					
2	41.500		F					
3	0.000		FR					
4	41.500	7.000	FR					
5	0.000		FR					
6	41.500	10.000	FR					
7	6.125	10.000	FR					
8	11.875	10.000	FR					
9	16.312	10.000	FR					
10	25.188	10.000	FR					
11	29.625	10.000	FR					
12	35.375	10.000	FR					
13	6.125	13.063	FR					
14	11.875	15.938	FR					
15	20.750	20.375	FR					
16	29.625	15.938	FR					
17	35.375	13.063	FR					
18	6.250	0.000	H					100
19	11.875	0.000	H					100
20	29.625	0.000	H					100
21	35.375	0.000	H					100
22	16.313	18.156	FR					100
23	25.188	18.156	FR					
24	16.313	0.000	H					100
25	25.188	0.000	H					100
								100
	========		=======		***************************************	======	======	=======
]	ELEMENT	I N F	ORMA	T I O	N		
${ t ELEM}$	NE	PE EL	EM	BETA	PROP	${ t ELEM}$	NE	PE
NO	NODE]	NODE LEN	GTH	ANGLE	\mathtt{TYPE}	\mathtt{TYPE}	HINGE	HINGE
come come come come and come come come	=======================================	=======================================		=======		=======		
		Units : F	t	Deg				
1	1	3 7	.000	90.00	1	BEAM		
2	2		.000	90.00	1	BEAM		
3	3		.000	90.00	1	BEAM		
4	4		.000	90.00	$\stackrel{-}{1}$	BEAM		
5	5		.125	0.00	2	STRUT	Y	Y
6	7		.750	0.00	2	STRUT	Y	Y
7	8		.437	0.00	2	STRUT	Y	Y
8	9		.876	0.00	2	STRUT	Y	Y

PROGRAM : General Frame Analysis v2.05

PAGE NO. 2

TIME : Thu Apr 13 17:39:04 2017 WINANDY GREENHOUSE CO. JOB NO. : 1

JOB : MERCED

RUN : MERCEDGABLE

ELEM NO	NE NODE	E L E M PE NODE	ENTIN ELEM LENGTH	FORMA BETA ANGLE	A T I O PROP TYPE	N ELEM TYPE	NE HINGE	PE HINGE
9	10	11	4.437	0.00	2	STRUT	Y	Y
10	11	12	5.750	0.00	2	STRUT	Y	Y
11	12	6	6.125	0.00	2	STRUT	Y	Y
12	5	13	6.848	26.57	4	BEAM		
13	13	14	6.429	26.57	4	BEAM		
14	14	22	4.961	26.55	4	BEAM		
15	23	16	4.960	-26.56	4	BEAM		
16	16	17	6.429	-26.57	4	BEAM		
17	17	6	6.848	-26.57	4	BEAM		
18	5	18		-57.99	6	BEAM	Y	Y
19	6	21	11.727	-121.49	6	BEAM	Y	Y
20	18	13	13.064	90.55	3	BEAM		
21	19	14	15.938	90.00	3	BEAM		
22	20	16	15.938	90.00	3	BEAM		
23	21	17	13.063	90.00	3	BEAM		
24	1	7	11.727	58.51	6	BEAM	Y	Y
25	8	22	9.285	61.45	5	TRUSS	Y	Y
26	9	15	11.284	66.84	5	TRUSS	Y	Y
27	10	15	11.284	113.16	5	TRUSS	Y	Y
28	11	23	9.285	118.55	5	TRUSS	Y	Y
29	12	2	11.727	-58.51	6	BEAM	Y	Y
30	22	24		-90.00	3	BEAM		
31	23	25		-90.00	3	BEAM		
32	22	15	4.961	26.57	4	BEAM		
33	23	15	4.962	153.43	4	BEAM		
		PROP	ERTY I	NFORN	1 A T I	O N		
PROP	SEC'	TION						
NO	NAI	ΜE	MODULU	JS	AREA		I	DIST
======	==========					=======================================		
		Uni	.ts : Lb/In	2	In2	I	n4	Ft
1	3 X 3		2.9e	-007	1.1		1.55	
2	#3		2.9e+		0.328		1.02	
3			2.9e+		0.681		.443	
	2.375RND				0.00-			
4	2.375KND 2 X 2		2.9e		0.825		.493	
4 5				-007		0	.493 .163	

PROGRAM : General Frame Analysis v2.05

PAGE NO. 3

WINANDY GREENHOUSE CO. TIME: Thu Apr 13 17:39:04 2017

JOB: MERCED JOB NO.: 1

RUN : MERCEDGABLE

Node List : 13,14

3 FORCE

10

NODAL LOAD INFORMATION REC LOAD LOAD PXPΥ Μ NO CASE TYPE DX ... DY BETA _______ Units: Lb Lb Ft-Lb Ft Ft Deq Description : DL Node List : 5,6 1 1 FORCE 0.00 -216.00 0.00 Description : DL Node List : 13,14,16,17 1 FORCE 0.00 -432.00 0.00 Description : DL Node List : 15 1 FORCE 3 0.00 -639.00 0.00 Description : LL Node List : 5,6 2 FORCE 4 0.00 -540.00 0.00 Description : LL Node List : 13,14,16,17 2 FORCE 0.00 -1080.00 0.00 Description : LL Node List : 15 2 FORCE 0.00 -799.00 0.00 Description : WL Node List : 3 3 FORCE 7 626.00 0.00 0.00 Description : WL Node List : 1,5 3 FORCE 8 314.00 0.00 0.00 Description : WL Node List : 5,15 3 FORCE 72.00 278.00 0.00 Description : WL

144.00 555.00

0.00

PROGRAM : General Frame Analysis v2.05

PAGE NO. 4

WINANDY GREENHOUSE CO.

TIME : Thu Apr 13 17:39:04 2017 JOB NO. : 1

JOB : MERCED

=======	======			=======================================	=======	=======================================
REC NO	LOAD CASE		PX	N F O R M A PY DY	M	
=======================================	=======		========			=======================================
Descrip Node Li		15,6	0.00	429.00	0.00	
Descrip Node Li 12	ist :		0.00	857.00	0.00	
Descrip Node Li 13	ist :		312.00	0.00	0.00	
Descrip Node Li 14		22,23	0.00	-319.50	0.00	
Descrip Node Li 15		22,23	0.00	-799.00	0.00	
Descrip Node Li 16		22	144.00	555.00	0.00	

PROGRAM : General Frame Analysis v2.05

PAGE NO. 5

WINANDY GREENHOUSE CO. TIME: Thu Apr 13 17:39:04 2017

JOB : MERCED

RUN : MERCEDGABLE

JOB NO. : 1

=======	=======			=======================================	====		==	==:	==:	==:	===	===	===	===	===	==:	==:	
		NO	D	Α	L	D	I	S	Ρ	L	A	С	E	М	E	Ν	Т	S
NODE	LOAD																	
NO	COMB				DX						Ι	ΣY						ROTATION
=======		=====	===	===	====:	===		===:	===	===	===	===	===	===	===	==:	===	
		Unit	S	:	In]	Σn						Deg

LOAD COMBINATIONS:

COMB	1		1.00			_
COMB	2		1.00 0.50 1.00	X		1 2 3
COMB	3	: +	1.00		CASE CASE	1 3
COMB	4	: +	1.00		CASE CASE	1 4
	1		1 2			0

1	1 2 3 4	0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000
2	1	0.0000	0.0000	0.0000
	2	0.0000	0.0000	0.0000
	3	0.0000	0.0000	0.0000
	4	0.0000	0.0000	0.0000
3	1	-0.0251	-0.0047	0.0000
	2	0.1069	0.0029	0.0000
	3	0.1140	0.0043	0.0000
	4	-0.0109	-0.0018	0.0000
4	1	0.0246	-0.0046	0.0000
	2	0.0453	-0.0032	0.0000
	3	0.0384	-0.0017	0.0000
	4	0.0108	-0.0018	0.0000
5	1	-0.0271	-0.0067	0.0000
	2	0.0613	0.0041	0.0000
	3	0.0689	0.0062	0.0000

PROGRAM : General Frame Analysis v2.05

PAGE NO. 6

JOB NO. : 1

WINANDY GREENHOUSE CO. TIME: Thu Apr 13 17:39:04 2017

JOB : MERCED

RUN : MERCEDGABLE

NODE	LOAD	N O D A L D	ISPLACEMEN	======================================	
NO	COMB	DX	DY	ROTATION	
	4	-0.0117	-0.0025	0.0000	
6	1 2	0.0266 0.0489	-0.0066 -0.0045	0.0000	
	3 4	0.0414 0.0117	-0.0045 -0.0025 -0.0025	0.0000	
7	1 2 3	-0.0192 0.0594 0.0649	0.0117 -0.0364 -0.0397	0.0000 0.0000 0.0000	
	4	-0.0083	0.0051	0.0000	
8	1 2 3	-0.0117 0.0577 0.0611	-0.0278 0.0011 0.0096	0.0000 0.0000 0.0000	
	4	-0.0050	-0.0107	0.0000	
9	1 2 3	-0.0060 0.0564 0.0581	-0.0950 0.0067 0.0335	0.0000 0.0000 0.0000	
	4	-0.0025	-0.0413	0.0000	
10	1 2 3 4	0.0055 0.0537 0.0522 0.0025	-0.0950 0.0029 0.0298 -0.0413	0.0000 0.0000 0.0000 0.0000	
	I	0.0023	-0.0413	0.0000	
11	1 2 3 4	0.0112 0.0524 0.0493 0.0050	-0.0277 -0.0073 0.0012 -0.0107	0.0000 0.0000 0.0000 0.0000	
12	1 2 3 4	0.0186 0.0507 0.0455 0.0082	0.0114 0.0311 0.0279 0.0050	0.0000 0.0000 0.0000 0.0000	

PROGRAM : General Frame Analysis v2.05

PAGE NO. 7

WINANDY GREENHOUSE CO.

TIME : Thu Apr 13 17:39:04 2017 JOB NO. : 1

JOB : MERCED RUN : MERCEDGABLE

NODE	.======:	NODAL DI	SPLACEME	N T S	
NODE NO	LOAD COMB	DX	DY	ROTATION	
	: == == == = = = = = = = = = = = = = =			=======================================	=======
13	1 2 3 4	-0.0298 0.0654 0.0735 -0.0136	-0.0122 -0.0032 0.0011 -0.0035	0.0000 0.0000 0.0000 0.0000	
14	1 2 3 4	-0.0337 0.0660 0.0751 -0.0156	-0.0146 -0.0047 0.0005 -0.0042	0.0000 0.0000 0.0000 0.0000	
15	1 2 3 4	-0.0003 0.0595 0.0596 0.0000	-0.0975 0.0054 0.0329 -0.0423	0.0000 0.0000 0.0000 0.0000	
16	1 2 3 4	0.0331 0.0538 0.0450 0.0155	-0.0146 -0.0012 0.0040 -0.0042	0.0000 0.0000 0.0000 0.0000	
17	1 2 3 4	0.0293 0.0523 0.0445 0.0136	-0.0120 -0.0009 0.0034 -0.0034	0.0000 0.0000 0.0000 0.0000	
18	1 2 3 4	0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000	0.0161 -0.0352 -0.0396 0.0074	
19	1 2 3 4	0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000	0.0148 -0.0290 -0.0330 0.0069	
20	1 2	0.0000	0.0000	-0.0146 -0.0237	

PROGRAM : General Frame Analysis v2.05

PAGE NO. 8

WINANDY GREENHOUSE CO. TIME: Thu Apr 13 17:39:04 2017

JOB : MERCED

JOB NO. : 1

RUN : MERCEDGABLE

_		N O D A L	DISPLACE	MENTS		
NODE NO	LOAD COMB	DX =======	DY	ROTATIO)N	
	3	0.0000	0.0000	-0.0198	}	
	4	0.0000	0.0000	-0.0068		
21	1	0.0000	0.0000	-0.0158	}	
	1 2	0.0000	0.0000	-0.0282		
	3	0.0000	0.0000	-0.0240)	
	4	0.0000	0.0000	-0.0073	•	
22	1	-0.0383	-0.0133	0.0000)	
	2	0.0644	-0.0025	0.0000		
	2 3	0.0748	0.0021	0.0000)	
	4	-0.0174	-0.0040	0.0000)	
23	1	0.0377	-0.0133	0.0000)	
	2	0.0517	-0.0077	0.0000	1	
	3	0.0416	-0.0030	0.0000	ı	
	4	0.0174	-0.0040	0.0000	i	
		E L E M	ENT REPO	 R T S		
ELEM	LOAD NOI		SIGN CONVENTION		:RS	
NO	COMB NO	D AXIAL	SHEAR	MOMENT MAX	MOM/DEFL	DIST
		======================================		======================================	=========	======
	Ĺ	Jnits : Lb	Lb	Lb-Ft Lb-	Ft /In	Ft

LOAD COMBINATIONS:

COMB 1 : 1.00 X CASE 1 + 1.00 X CASE 2 COMB 2 : 1.00 X CASE 1

+ 0.50 X CASE 2 + 1.00 X CASE 3

COMB 3 : 1.00 X CASE 1 + 1.00 X CASE 3

COMB 4 : 1.00 X CASE 1 + 1.00 X CASE 4

PROGRAM : General Frame Analysis v2.05

PAGE NO. 9

WINANDY GREENHOUSE CO. TIME: Thu Apr 13 17:39:04 2017 JOB NO. : 1

JOB : MERCED

RUN : MERCEDGABLE

ELEMENT REPORTS

			ЕЬЕМ				
ELEM	LOAD COMB	NODE	አ ንደ ተ አ ተ	SIGN CONVENTIO			DTCE
NO	COMB	NO	AXIAL	SHEAR 	MOMENT	MAX MOM/DEFL	DIST
1	1	1	-1777.4299	-22.9055	80.1691		
		3	-1777.4299	-22.9055	-80.1691	-0.0024	1.48
	2	1	1101 (002	07 4050	241 2224		
	۷	1 3	1101.6903 1101.6903	97.4950 97.4950	-341.2324 341.2324	-0.0103	5.52
		J	1101.0303	57.1550	311.2321	0.0103	3.32
	3	1	1652.6893	103.9971	-363.9898		
		3	1652.6893	103.9971	363.9898	-0.0110	5.52
	4	1	-675.4319	-9.9012	34.6543		
	4	3	-675.4319	-9.9012 -9.9012	-34.6543	-0.0010	1.48
		•	0,011019	3.3012	31.0313	0.0010	1.10
_							
2	1	2	-1755.1540	22.4674	-78.6360	0.0004	1 40
		4	-1755.1540	22.4674	78.6360	0.0024	1.48
	2	2	-1202.5355	41.3460	-144.7110		
		4	-1202.5355	41.3460	144.7110	-0.0044	5.52
	_	_					
	3	2 4	-660.1096 -660.1096	35.0397	-122.6389	0 0027	F
		4	-660.1096	35.0397	122.6389	-0.0037	5.52
	4	2	-670.3023	9.8548	-34.4917		
		4	-670.3023	9.8548	34.4917	-0.0010	5.52
3	1	3	-1777.4299	-22.9055	34.3582		
9		5	-1777.4299	-22.9055	-34.3582	0.0002	2.37
	2	3	1101.6903	-528.5050	792.7576		
		5	1101.6903	-528.5050	-792.7576	0.0044	2.37
	3	3	1652.6893	-522.0029	783.0044		
	J	5	1652.6893	-522.0029	-783.0044	-0.0043	0.63
	4	3	-675.4319	-9.9012	14.8518		
		5	-675.4319	-9.9012	-14.8518		
4	1	4	-1755.1540	22.4674	-33.7012		
		6	-1755.1540	22.4674	33.7012	0.0002	0.63
	2	4	1202 5255	41 2460	CO 0100		
	2	4 6	-1202.5355 -1202.5355	41.3460 41.3460	-62.0190 62.0190	0.0003	0.63
		9	1202.000	41.0400	02.0170	0.0003	0.00

PROGRAM : General Frame Analysis v2.05

PAGE NO. 10

WINANDY GREENHOUSE CO. TIME : Thu Apr 13 17:39:04 2017 JOB NO. : 1

JOB : MERCED

RUN : MERCEDGABLE

ETEM	LOAD	NODE	E L E M				======
ELEM NO	COMB	NO NO	AXIAL	SIGN CONVENTION SHEAR	MOMENT	MAX MOM/DEFL	DIST
	======	=====:	=======================================	THE ROLL SHALL SHA			
	3	4 6	-660.1096 -660.1096	35.0397 35.0397	-52.5595 52.5595	0.0003	0.63
	4	4 6	-670.3023 -670.3023	9.8548 9.8548	-14.7821 14.7821		
5	1	5 7	1024.5998 1024.5998	0.0000	0.0000		
	2	5 7	-236.3828 -236.3828	0.0000	0.0000		
	3	5 7	-525.6203 -525.6203	0.0000	0.0000		
	4	5 7	446.1249 446.1249	0.0000	0.0000		
6	1	7 8	1024.5998 1024.5998	0.0000	0.0000		
	2	7 8	-236.3828 -236.3828	0.0000 0.0000	0.0000		
	3	7 8	-525.6203 -525.6203	0.0000	0.0000		
	4	7 8	446.1249 446.1249	0.0000	0.0000		
7	1	8 9	1024.5998 1024.5998	0.0000	0.0000		
	2	8 9	-236.3828 -236.3828	0.0000	0.0000		
	3	8 9	-525.6203 -525.6203	0.0000	0.0000		
	4	8 9	446.1249 446.1249	0.0000	0.0000 0.0000		

PROGRAM : General Frame Analysis v2.05

PAGE NO. 11

WINANDY GREENHOUSE CO. TIME: Thu Apr 13 17:39:04 2017 JOB : MERCED JOB NO. : 1

RUN : MERCEDGABLE

		=======	E L E M	ENT REPO			======
ELEM NO	LOAD COMB	NODE NO	AXIAL	SIGN CONVENTION SHEAR	MOMENT	MAX MOM/DEFL	DIST
	=====				======	========	
8	1	9 10	1024.5998 1024.5998	0.0000 0.0000	0.0000		
	2	9 10	-236.3828 -236.3828	0.0000 0.0000	0.0000		
	3	9 10	-525.6203 -525.6203	0.0000	0.0000		
	4	9 10	446.1249 446.1249	0.0000	0.0000		
9	1	10 11	1024.5998 1024.5998	0.0000	0.0000		
	2	10 11	-236.3828 -236.3828	0.0000 0.0000	0.0000		
	3	10 11	-525.6203 -525.6203	0.0000 0.0000	0.0000		
	4	10 11	446.1249 446.1249	0.0000	0.0000		
10	1	11 12	1024.5998 1024.5998	0.0000	0.0000		
	2	11 12	-236.3828 -236.3828	0.0000 0.0000	0.0000		
	3	11 12	-525.6203 -525.6203	0.0000	0.0000		
	4	11 12	446.1249 446.1249	0.0000	0.0000		
11	1	12 6	1024.5998 1024.5998	0.0000	0.0000		

PROGRAM : General Frame Analysis v2.05

PAGE NO. 12

TIME : Thu Apr 13 17:39:04 2017 WINANDY GREENHOUSE CO. JOB NO. : 1

JOB : MERCED

RUN : MERCEDGABLE

ELEM	LOAD	NODE	E L E M	ENT REPO		SIGNERS	
NO =======	COMB	NO =====	AXIAL:	SHEAR	MOMENT	MAX MOM/DEFL	DIST
	2	12	-236.3828	0.0000	0.0000		
	2	6	-236.3828	0.0000	0.0000		
	3	12	-525.6203	0.0000	0.0000		
		6	-525.6203	0.0000	0.0000		
	4	12 6	446.1249 446.1249	0.0000 0.0000	0.0000 0.0000		
12	1	5 13	-1435.9892 -1435.9892	1.1594 1.1594	-3.9700 3.9700	0.0004	1.45
						0.0004	1.45
	2	5 13	119.8738 119.8738	2.6030 2.6030	-8.9128 8.9128	0.0008	1.45
	3	5	521.3413	2.0299	-6.9506		
		13	521.3413	2.0299	6.9506	0.0006	1.45
	4	5 13	-633.0542 -633.0542	0.0133	-0.0455		
		13	-633.0542	0.0133	0.0455		
13	1	13	-1419.6983	0.1425	-0.4582		
		14	-1419.6983	0.1425	0.4582		
	2	13 14	-34.1775 -34.1775	0.6003 0.6003	-1.9295 1.9295	-0.0002	5.07
	3					0.0002	3.07
	3	13 14	361.4057 361.4057	0.4718 0.4718	-1.5165 1.5165	-0.0001	5.07
	4	13	-628.5319	-0.1144	0.3678		
		14	-628.5319	-0.1144	-0.3678		
14	1	14	-1418.4090	-2.6229	6.5067		
	-	22	-1418.4090	-2.6229	-6.5067	0.0003	3.91
	2	14	-193.3428	-2.1647	5.3700		.
		22	-193.3428	-2.1647	-5.3700	-0.0003	1.05
	3	14 22	201.7521 201.7521	-1.2686 -1.2686	3.1471 -3.1471	-0.0002	1.05
			· · · · · · · · · · · · · · · · · · ·		· -	· -	

PROGRAM : General Frame Analysis v2.05

PAGE NO. 13

WINANDY GREENHOUSE CO. TIME: Thu Apr 13 17:39:04 2017 JOB NO. : 1

JOB : MERCED

RUN : MERCEDGABLE

ELEM NO	LOAD COMB	NODE NO	E L E M	IENT REPO SIGN CONVENTION SHEAR			DIST
	=====		=======================================	=======================================	=======	========	
	4	14 22	-628.2192 -628.2192	-0.8308 -0.8308	2.0610 -2.0610		
15	1	23 16	-1418.4728 -1418.4728	2.6281 2.6281	-6.5184 6.5184	0.0003	1.05
	2	23 16	-438.1501 -438.1501	-5.5021 -5.5021	13.6466 -13.6466	0.0007	3.91
	3	23 16	-43.0370 -43.0370	-6.3997 -6.3997	15.8729 -15.8729	-0.0008	1.05
	4	23 16	-628.2468 -628.2468	0.8329 0.8329	-2.0657 2.0657		
16	1	16 17	-1419.7529 -1419.7529	-0.2381 -0.2381	0.7655 -0.7655		
	2	16 17	-434.9884 -434.9884	0.1577 0.1577	-0.5070 0.5070		
	3	16 17	-39.3902 -39.3902	0.3102 0.3102	-0.9972 0.9972		
	4	16 17	-628.5566 -628.5566	0.0668 0.0668	-0.2148 0.2148		
17	1	17 6	-1419.8944 -1419.8944	-1.1178 -1.1178	3.8275 -3.8275	-0.0003	1.45
	2	17 6	-433.7316 -433.7316	1.4680 1.4680	-5.0266 5.0266	-0.0005	5.40
	3	17 6	-38.0054 -38.0054	2.0354 2.0354	-6.9695 6.9695	-0.0006	5.40
	4	17 6	-628.4420 -628.4420	0.0170 0.0170	-0.0581 0.0581		

PROGRAM : General Frame Analysis v2.05

PAGE NO. 14 TIME: Thu Apr 13 17:39:04 2017

JOB NO. : 1

WINANDY GREENHOUSE CO. JOB : MERCED

RUN : MERCEDGABLE

======	=====	======	=======================================				======
ELEM NO	LOAD COMB	NODE NO	E L E M AXIAL	ENT REPO SIGN CONVENTION SHEAR		SIGNERS MAX MOM/DEFL	DICT
				DIIBAK	MOMENT	MAX MOM/DEFL	DIST
18	1	5	445.8914	0.0000	0 0000		
10	Τ.	18	445.8914	0.0000	0.0000		
		Τ0	445.0914	0.0000	0.0000		
	2	Е	1402 0670	0 0000	0 0000		
	4	5	-1483.9678	0.0000	0.0000		
		18	-1483.9678	0.0000	0.0000		
	2	_	1600 0700	0.0000	0 0000		
	3	5	-1602.9790	0.0000	0.0000		
		18	-1602.9790	0.0000	0.0000		
	4	_	000 0600	0.000			
	4	5	207.8690	0.0000	0.0000		
		18	207.8690	0.0000	0.0000		
1.0	-	_					
19	1	6	425.7675	0.0000	0.0000		
		21	425.7675	0.0000	0.0000		
	_	_					
	2	6	1117.3820	0.0000	0.0000		
		21	1117.3820	0.0000	0.0000		
	_						
	3	6	1006.0708	0.0000	0.0000		
		21	1006.0708	0.000	0.0000		
	4	6	203.1452	0.0000	0.0000		
		21	203.1452	0.000	0.0000		
	_						
20	1	18	-1503.7870	-0.3149	0.1344		
		13	-1503.7870	-0.3149	-3.9788	0.0057	7.60
	2	18	-484.1384	0.6876	-0.2935		
		13	-484.1384	0.6876	8.6886	-0.0124	7.60
	3	18	52.8328	0.7731	-0.3300		
		13	52.8328	0.7731	9.7698	-0.0139	7.60
	4	18	-429.8447	-0.1438	0.0614		
		13	-429.8447	-0.1438	-1.8166	0.0026	7.60
21	1	19	-1508.7209	-0.1975	0.1237		
		14	-1508.7209	-0.1975	-3.0242	0.0064	9.29
	2	19	-485.6765	0.3864	-0.2420		
		14	-485.6765	0.3864	5.9171	-0.0125	9.29
					_	-	-

PROGRAM : General Frame Analysis v2.05

PAGE NO. 15

WINANDY GREENHOUSE CO.

TIME: Thu Apr 13 17:39:04 2017 JOB NO.: 1

JOB : MERCED

RUN : MERCEDGABLE

	======	======	======== E L E M	======================================	======== R T S	==========	ACTION CHICAL STATE WHITE STATE STATE AND
ELEM NO	LOAD COMB	NODE NO	AXIAL	SIGN CONVENTION SHEAR	: BEAM DE	ESIGNERS MAX MOM/DEFL	DIST
======	=====	=====	=========		=======================================	==========	
	2	1.0	F2 10F0	0. 1206			
	3	19 14	53.1250 53.1250	0.4396 0.4396	-0.2753 6.7309	-0.0142	0 00
		エユ	33.1230	0.4396	6.7309	-0.0142	9.29
	4	19	-431.1180	-0.0912	0.0571		
		14	-431.1180	-0.0912	-1.3966	0.0029	9.29
22	1	20	-1508.7494	0.1939	-0.1214		
	_	16	-1508.7494	0.1939	2.9685	-0.0063	9.29
	2	20	-121.4411	0.3148	-0.1972		
		16	-121.4411	0.3148	4.8208	-0.0102	9.29
	3	20	417.3708	0.2633	-0.1649		
		16	417.3708	0.2633	4.0312	-0.0085	9.29
	_			_			
	4	20 16	-431.1256 -431.1256	0.0907	-0.0568	0 0000	0 00
		Τ.0	-431.1256	0.0907	1.3893	-0.0029	9.29
23	1	21	-1511.0670	0.3084	-0.1316		
		17	-1511.0670	0.3084	3.8964	-0.0056	7.60
	2	21	-116.7086	0.5507	-0.2350		
	2	17	-116.7086	0.5507	6.9584	-0.0099	7.60
	3	21	422.8399	0.4681	-0.1998		
		17	422.8399	0.4681	5.9147	-0.0084	7.60
	4	21	-431.9700	0.1432	-0.0611		
		17	-431.9700	0.1432	1.8089	-0.0026	7.60
24	1	7	0.0000	0.000	0 0000		
24	Т.	1 7	0.0000	0.0000	0.0000		
		·	0.000	0.0000	0.0000		
	2	1	0.0000	0.0000	0.0000		
		7	0.0000	0.0000	0.0000		
	3	1	0.0000	0.000	0.0000		
)	7	0.0000	0.0000	0.0000		
	4	1	0.0000	0.0000	0.0000		
		7	0.0000	0.0000	0.0000		

PROGRAM : General Frame Analysis v2.05

PAGE NO. 16

WINANDY GREENHOUSE CO.

TIME: Thu Apr 13 17:39:04 2017 JOB NO.: 1

JOB : MERCED RUN : MERCEDGABLE

ELEM NO	LOAD COMB	NODE NO	E L E M	SHEAR		/DEFL DIST
25	1	0	0 0000		0.0000	========
25	1	8 22	0.0000	0.0000 0.0000	0.0000 0.0000	
	2	8 22	0.0000	0.0000 0.0000	0.0000 0.0000	
	3	8 22	0.0000	0.0000	0.0000 0.0000	
	4	8 22	0.0000	0.0000	0.0000	
26	1	9 15	0.0000	0.0000	0.0000 0.0000	
	2	9 15	0.0000	0.0000	0.0000 0.0000	
	3	9 15	0.0000	0.0000 0.0000	0.0000 0.0000	
	4	9 15	0.0000	0.0000	0.0000	
27	1	10 15	0.0000	0.0000 0.0000	0.0000	
	2	10 15	0.0000	0.0000 0.0000	0.0000	
	3	10 15	0.0000	0.0000 0.0000	0.0000 0.0000	
	4	10 15	0.0000	0.0000 0.0000	0.0000	
28	1	11 23	0.0000	0.0000	0.0000	

PROGRAM : General Frame Analysis v2.05

PAGE NO. 17

WINANDY GREENHOUSE CO. TIME: Thu Apr 13 17:39:04 2017

JOB : MERCED

JOB NO. : 1

RUN : MERCEDGABLE

ELEM NO	===== LOAD COMB	NODE	======= E	ENTREPO SIGN CONVENTION SHEAR	R T S : BEAM DE MOMENT	SIGNERS MAX MOM/DEFL	====== DIST
=======	=====	=====			========	=======================================	
	2	11 23	0.0000	0.0000	0.0000		
	3	11 23	0.0000	0.0000	0.0000		
	4	11 23	0.0000	0.0000	0.0000		
29	1	12 2	0.0000	0.0000	0.0000		
	2	12 2	0.0000	0.0000	0.0000		
	3	12 2	0.0000	0.0000	0.0000		
	4	12 2	0.0000	0.0000	0.0000		
30	1	22 24	-1205.8393 -1205.8393	-0.1530 -0.1530	2.6555 -0.1230	-0.0072	7.56
	2	22 24	-229.9412 -229.9412	0.2570 0.2570	-4.4601 0.2066	0.0122	7.56
	3	22 24	193.5088 193.5088	0.2988 0.2988	-5.1840 0.2402	0.0141	7.56
	4	22 24	-358.9392 -358.9392	-0.0696 -0.0696	1.2077 -0.0560	-0.0033	7.56
31	1	23 25	-1205.5087 -1205.5087	0.1506 0.1506	-2.6126 0.1210	0.0071	7.56
	2	23 25	-699.2280 -699.2280	0.2065 0.2065	-3.5833 0.1660	0.0098	7.56
	3	23 25	-275.8697 -275.8697	0.1659 0.1659	-2.8780 0.1333	0.0078	7.56

PROGRAM : General Frame Analysis v2.05

PAGE NO. 18

TIME: Thu Apr 13 17:39:04 2017 WINANDY GREENHOUSE CO.

JOB : MERCED

JOB NO. : 1 RUN : MERCEDGABLE

======	=====	====	========= E L E M	======================================	========= O R T S	_ = = = = = = = = = = = =	======
ELEM	LOAD	NODI	⊆	SIGN CONVENTION	N : BEAM DESIG		
NO	COMB	_	AXIAL	SHEAR	MOMENT MA	X MOM/DEFL	DIST
	4	23	-358.7922	0.0693	-1.2021	0.000	
		25	-358.7922	0.0693	0.0557	0.0033	7.56
32	1	22	-1457.6115	75.0402	-186.1349		
		15	-1457.6115	75.0402	186.1349	0.0089	1.05
	2	22	-351.3992	-7.5354	18.6914		
		15	-351.3992	-7.5354	-18.6914	0.0009	3.91
	3	22	54.4455	-27.9345	69.2906		
	5	15	54.4455	-27.9345	-69.2906	0.0033	3.91
	4	22 15	-645.9222 -645.9222	34.2421 34.2421	-84.9365 84.9365	0.0041	1.05
		10		J4.2421	04.5505	0.0041	1.05
33	1	23 15	-1457.5187 -1457.5187	-74.9996 -74.9996	186.0678 -186.0678	-0.0089	1.05
		12	-145/.516/	- /4.9996	-100.00/0	-0.0089	1.05
	2	23	-429.4929	12.3144	-30.5510		
		15	-429.4929	12.3144	30.5510	-0.0015	3.91
	3	23	-23.6739	32.7024	-81.1320		
		15	-23.6739	32.7024	81.1320	0.0039	1.05
	4	23	-645.8807	24 2225	04 0050		
	4	23 15	-645.8807 -645.8807	-34.2235 -34.2235	84.9058 -84.9058	-0.0041	1.05
				011111			
			:======== R E A (======================================	======================================	==========	
NODE	LOA	D	R E A		5		
NO	COM		PX	PY	MOMEN	T	
	=====	====	Units : Lb	 Lb	======== Lb-F	 +	======
			טוודרם : דוח	מם	TD-F	L	

LOAD COMBINATIONS:

COMB 1 : 1.00 X CASE 1 + 1.00 X CASE 2

COMB 2 : 1.00 X CASE 1

+ 0.50 X CASE 2 + 1.00 X CASE 3

PROGRAM : General Frame Analysis v2.05

PAGE NO. 19

TIME: Thu Apr 13 17:39:04 2017 JOB NO.: 1 WINANDY GREENHOUSE CO.

JOB : MERCED

RUN : MERCEDGABLE

		=====						
	=			====: R E	_	======================================		
NODE		LOAD						
NO		COMB			PX	PY	MOMENT	
	====	=====		====:	====			
COMB	2.	1 00	v cace	1				
COMB	3 : +	1.00	X CASE	1 3				
	т	1.00	A CASE	3				
COMB	4:	1.00	X CASE	1				
	+		X CASE	$\overset{-}{4}$				
		_						
1	L	1			.9055	1777.4299	-80.1691	
		2			.4950	-1101.6903	341.2324	
		3			.9971		363.9898	
		4		-302	.0988	675.4319	-34.6543	
2	2	1		-22	.4674	1755.1540	78.6360	
		2			.3460	1202.5355	144.7110	
		3			.0397	660.1096	122.6389	
		4		-321	.8548	670.3023	34.4917	
1.0	,	-		000	0.455	1105 6050	0 1044	
18	3	1			. 2477	1125.6059	-0.1344	
		2 3		-791.		1742.5118	0.2935	
		3 4		-849.	2011	1306.4858 253.5538	0.3300 -0.0614	
		4		106.	. 2011	453.5530	-0.0614	
19)	1		0.	1975	1508.7209	-0.1237	
		2		-0.	3864	485.6765	0.2420	
		3			4396	-53.1250	0.2753	
		4		0.	0912	431.1180	-0.0571	
20		1		- 0	1939	1508.7494	0.1214	
20		2			3148	121.4411	0.1214	
		3			2633	-417.3708	0.1649	
		4			0907	431.1256	0.0568	
		~		•	,	131.1430	0.0300	
21		1		-222.		1147.9918	0.1316	
		2		-584.		-836.1438	0.2350	
		3		-525.		-1280.7713	0.1998	
		4		-106.	2484	258.7370	0.0611	

3 X3 Square

$$Cmx = .75$$
 $\frac{Kl}{r} = \frac{3(84)}{11.19}$

$$F_{b} = .66(50) = 33 \text{ M5I} \qquad F_{e'} = 12(3.14)^{2}29,000,000$$

$$+ 1/3 \text{ for } DL + WL = 4405I \qquad = 446779$$

2 X 2 59 Top Chard

$$f_a = 7579 \# /.83 \% = 9/31 P5I$$

$$f_b = 4/9 \# 12\%.50 = 10056pt Ml = 3(73).$$

$$f_5 = 192/.83 = 147 P5I$$

$$F_{a} = 21,066 \quad p_{5}I \qquad F_{o}' = \frac{12(3.14)^{2}(29000000)}{23(69.7)^{2}}$$

$$F_{b} = {}_{*}6(150) = 33,000 p_{5}I \qquad = 30739 p_{5}I$$

$$+ {}_{'3}f_{5} + WL + DL$$

$$\frac{9/31}{33,000} + \frac{10056}{33,000} + 0 = 1$$

$$\frac{9/31}{31,060} + \frac{75(10056)}{(1 - \frac{9/31}{30739})(33,000)} = .78$$

Sect OU

Cross Tie

$$F_{a}=.6(50,000)=30000$$

$$\frac{20683}{30000} \leq 1 \text{ Sect ok}$$

Tension Strut.

.125 $\pm (2.5-.5625) = 242''^2$ $f_a = 2313/.242 = 9553 PSI$ $F_a = 25000 \pm .66 = 16500PSI$

2.3755trut

$$f_{A} = 2128^{\#}/.681^{"2} = 3125pst = 8(94) = 81$$

$$f_{b} = 45^{\#}/.373 = 1448pst = 93$$

 $F_{e'} = \frac{12(\pi^2)(29000000)}{23(93)^2}$ $F_{e'} = 17266$

FA = 16,29 KSI = 16290 PSI

Fb=.66(50)=33000 PSI

 $\frac{3125}{33000} + \frac{14148}{33000} \leq 1$

 $\frac{-3125}{16290} + \frac{8(1448)}{(1-\frac{3125}{17266})33000} < 1$

Set OKfor Load

X Brace

USE Flat 2/2×1/8 @ 16500 ¥.242 = 3993 # Max Land

Mose Applied = 5021#

USE 14 "double Plate"/39Bolt

3/8 bolt = 2310#

25 x(1\frac{1}{2} -,625) x 16500 = 3610 #

USE 3 Wind Brace 5ef 5

Gable Post

 $f_{a}=1206^{\#}/.681^{112}=1771P5I$ $\frac{Ul}{Fa}=6.420 \text{ H5I}$ $\frac{(.7)(a16)^{2}-187}{a81}$

1771 PSI / SectOK

X Brace

USE 1/8 X21/2@ 16500 +, 242 = 3992 #max

Applied load = 5021

USE double 1/4" Plate at Basew/ 26 bolt

Max 5hear = 2310 #

1/4" * (1.5 - .625) * 16500 = 3610 #

USE 3 Sets Wind Bases

1/2" BoHs are 1/257# Single Sheare 8514 # double Sheare 3/3 BoHs are 2310# Single Sheare 4/620# double Sheare

All Connections passe More than Sufficient Bolts 602 Allphal Loads